File size: 9,110 Bytes
7f77d8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271125a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f77d8b
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
---
pipeline_tag: image-text-to-text
language:
- multilingual
tags:
- deepseek
- vision-language
- ocr
- custom_code
license: mit
---
<div align="center">
  <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek AI" />
</div>
<hr>
<div align="center">
  <a href="https://www.deepseek.com/" target="_blank">
    <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" />
  </a>
  <a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR" target="_blank">
    <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" />
  </a>

</div>

<div align="center">

  <a href="https://discord.gg/Tc7c45Zzu5" target="_blank">
    <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" />
  </a>
  <a href="https://twitter.com/deepseek_ai" target="_blank">
    <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" />
  </a>

</div>



<p align="center">
  <a href="https://github.com/deepseek-ai/DeepSeek-OCR"><b>🌟 Github</b></a> |
  <a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR"><b>📥 Model Download</b></a> |
  <a href="https://github.com/deepseek-ai/DeepSeek-OCR/blob/main/DeepSeek_OCR_paper.pdf"><b>📄 Paper Link</b></a> |
  <a href="https://arxiv.org/abs/2510.18234"><b>📄 Arxiv Paper Link</b></a> |
</p>
<h2>
<p align="center">
  <a href="">DeepSeek-OCR: Contexts Optical Compression</a>
</p>
</h2>
<p align="center">
<img src="assets/fig1.png" style="width: 1000px" align=center>
</p>
<p align="center">
<a href="">Explore the boundaries of visual-text compression.</a>       
</p>

## Usage
Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.12.9 + CUDA11.8:

```
torch==2.6.0
transformers==4.46.3
tokenizers==0.20.3
einops
addict 
easydict
pip install flash-attn==2.7.3 --no-build-isolation
```

```python
from transformers import AutoModel, AutoTokenizer
import torch
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
model_name = 'deepseek-ai/DeepSeek-OCR'

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(model_name, _attn_implementation='flash_attention_2', trust_remote_code=True, use_safetensors=True)
model = model.eval().cuda().to(torch.bfloat16)

# prompt = "<image>\nFree OCR. "
prompt = "<image>\n<|grounding|>Convert the document to markdown. "
image_file = 'your_image.jpg'
output_path = 'your/output/dir'

# infer(self, tokenizer, prompt='', image_file='', output_path = ' ', base_size = 1024, image_size = 640, crop_mode = True, test_compress = False, save_results = False):

# Tiny: base_size = 512, image_size = 512, crop_mode = False
# Small: base_size = 640, image_size = 640, crop_mode = False
# Base: base_size = 1024, image_size = 1024, crop_mode = False
# Large: base_size = 1280, image_size = 1280, crop_mode = False

# Gundam: base_size = 1024, image_size = 640, crop_mode = True

res = model.infer(tokenizer, prompt=prompt, image_file=image_file, output_path = output_path, base_size = 1024, image_size = 640, crop_mode=True, save_results = True, test_compress = True)
```

## vLLM
Refer to [🌟GitHub](https://github.com/deepseek-ai/DeepSeek-OCR/) for guidance on model inference acceleration and PDF processing, etc.<!--  -->

[2025/10/23] 🚀🚀🚀 DeepSeek-OCR is now officially supported in upstream [vLLM](https://docs.vllm.ai/projects/recipes/en/latest/DeepSeek/DeepSeek-OCR.html#installing-vllm).
```shell
uv venv
source .venv/bin/activate
# Until v0.11.1 release, you need to install vLLM from nightly build
uv pip install -U vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
```

```python
from vllm import LLM, SamplingParams
from vllm.model_executor.models.deepseek_ocr import NGramPerReqLogitsProcessor
from PIL import Image

# Create model instance
llm = LLM(
    model="deepseek-ai/DeepSeek-OCR",
    enable_prefix_caching=False,
    mm_processor_cache_gb=0,
    logits_processors=[NGramPerReqLogitsProcessor]
)

# Prepare batched input with your image file
image_1 = Image.open("path/to/your/image_1.png").convert("RGB")
image_2 = Image.open("path/to/your/image_2.png").convert("RGB")
prompt = "<image>\nFree OCR."

model_input = [
    {
        "prompt": prompt,
        "multi_modal_data": {"image": image_1}
    },
    {
        "prompt": prompt,
        "multi_modal_data": {"image": image_2}
    }
]

sampling_param = SamplingParams(
            temperature=0.0,
            max_tokens=8192,
            # ngram logit processor args
            extra_args=dict(
                ngram_size=30,
                window_size=90,
                whitelist_token_ids={128821, 128822},  # whitelist: <td>, </td>
            ),
            skip_special_tokens=False,
        )
# Generate output
model_outputs = llm.generate(model_input, sampling_param)

# Print output
for output in model_outputs:
    print(output.outputs[0].text)
```


## Visualizations
<table>
<tr>
<td><img src="assets/show1.jpg" style="width: 500px"></td>
<td><img src="assets/show2.jpg" style="width: 500px"></td>
</tr>
<tr>
<td><img src="assets/show3.jpg" style="width: 500px"></td>
<td><img src="assets/show4.jpg" style="width: 500px"></td>
</tr>
</table>


## Acknowledgement

We would like to thank [Vary](https://github.com/Ucas-HaoranWei/Vary/), [GOT-OCR2.0](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/), [MinerU](https://github.com/opendatalab/MinerU), [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR), [OneChart](https://github.com/LingyvKong/OneChart), [Slow Perception](https://github.com/Ucas-HaoranWei/Slow-Perception) for their valuable models and ideas.

We also appreciate the benchmarks: [Fox](https://github.com/ucaslcl/Fox), [OminiDocBench](https://github.com/opendatalab/OmniDocBench).

---

## 🔍 Summary of Changes

### 1. **Formatting & Clean-Up**

* Removed extra spaces, blank lines, and inconsistent indentation.
* Fixed small style issues (like missing spaces in comments).
* Added missing newline at the end of the file.

---

### 2. **Device and Dtype Handling**

* Added automatic device detection:

  ```python
  model_device = next(self.parameters()).device
  ```
* Added adaptive dtype logic:

  ```python
  image_dtype = torch.bfloat16 if model_device.type == "cuda" else torch.float32
  ```
* Replaced all hardcoded `.cuda()` and `.to(torch.bfloat16)` with:

  ```python
  .to(model_device)
  .to(image_dtype)
  ```**Now works automatically on both GPU and CPU**, without device mismatch errors.

---

### 3. **Autocast and Inference Improvements**

* Wrapped generation in a conditional autocast block:

  ```python
  use_autocast = model_device.type == "cuda"
  if use_autocast:
      with torch.autocast("cuda", dtype=torch.bfloat16):
          with torch.no_grad():
              ...
  else:
      with torch.no_grad():
          ...
  ```
* Reduces memory usage and speeds up inference on GPU.
* Added `torch.no_grad()` for safer evaluation (no gradient tracking).

---

### 4. **Image Preprocessing**

* All image tensors now use:

  ```python
  .to(image_dtype)
  ```

  instead of hardcoded `torch.bfloat16`.
* Improves flexibility and prevents dtype errors when running on CPU.

---

### 5. **Generation Parameter Updates**

* Adjusted text generation settings:

  ```python
  do_sample = False
  num_beams = 1
  max_new_tokens = 4096  # was 8192
  min_new_tokens = 1
  repetition_penalty = 1.2
  pad_token_id = tokenizer.pad_token_id or tokenizer.eos_token_id
  ```

🧠 Results: Faster, more controlled generation; avoids repetitive or runaway outputs.

---

### 6. **Safer Decoding**

* Cleaned up decoding logic:

  ```python
  input_length = input_ids.unsqueeze(0).to(model_device).shape[1]
  outputs = tokenizer.decode(output_ids[0, input_length:])
  ```

✅ Avoids CUDA-specific assumptions, consistent across devices.

---

### 7. **Miscellaneous**

* Added helpful comments for clarity.
* Improved readability around image transformation and saving results.
* Added extra blank lines for cleaner structure.

---

## ⚙️ Overall Impact

| Category        | Before                | After                                    |
| --------------- | --------------------- | ---------------------------------------- |
| Device handling | Hardcoded `.cuda()`   | Auto-detected and flexible               |
| Dtype           | Always bfloat16       | Adaptive: bfloat16 (GPU) / float32 (CPU) |
| Inference       | Could crash on CPU    | Runs safely everywhere                   |
| Generation      | Unbounded, repetitive | Tuned and stable                         |
| Readability     | Mixed formatting      | Clean and consistent                     |

---

## Citation
```bibtex
@article{wei2025deepseek,
  title={DeepSeek-OCR: Contexts Optical Compression},
  author={Wei, Haoran and Sun, Yaofeng and Li, Yukun},
  journal={arXiv preprint arXiv:2510.18234},
  year={2025}
}