Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: mit
|
| 5 |
+
tags:
|
| 6 |
+
- image-generation
|
| 7 |
+
- autoregressive
|
| 8 |
+
- next-scale-prediction
|
| 9 |
+
- exposure-bias
|
| 10 |
+
- post-training
|
| 11 |
+
- pytorch
|
| 12 |
+
- imagenet
|
| 13 |
+
library_name: pytorch
|
| 14 |
+
inference: false
|
| 15 |
+
model-index:
|
| 16 |
+
- name: ZGZzz/SAR
|
| 17 |
+
results:
|
| 18 |
+
- task:
|
| 19 |
+
type: image-generation
|
| 20 |
+
name: Image Generation
|
| 21 |
+
dataset:
|
| 22 |
+
name: ImageNet 256×256
|
| 23 |
+
type: imagenet-1k
|
| 24 |
+
config: 256x256
|
| 25 |
+
split: validation
|
| 26 |
+
metrics:
|
| 27 |
+
- type: fid
|
| 28 |
+
name: FID (FlexVAR-d16, +SAR)
|
| 29 |
+
value: 2.89
|
| 30 |
+
higher_is_better: false
|
| 31 |
+
- type: fid
|
| 32 |
+
name: FID (FlexVAR-d20, +SAR)
|
| 33 |
+
value: 2.35
|
| 34 |
+
higher_is_better: false
|
| 35 |
+
- type: fid
|
| 36 |
+
name: FID (FlexVAR-d24, +SAR)
|
| 37 |
+
value: 2.14
|
| 38 |
+
higher_is_better: false
|
| 39 |
+
datasets:
|
| 40 |
+
- ILSVRC/imagenet-1k
|
| 41 |
+
base_model:
|
| 42 |
+
- jiaosiyu1999/FlexVAR
|
| 43 |
+
pipeline_tag: text-to-image
|
| 44 |
+
---
|
| 45 |
+
|
| 46 |
+
<div align="center">
|
| 47 |
+
<h1>Rethinking Training Dynamics in Scale-wise Autoregressive Generation</h1>
|
| 48 |
+
|
| 49 |
+
<a href="https://gengzezhou.github.io/" target="_blank">Gengze Zhou</a><sup>1*</sup>,
|
| 50 |
+
<a href="https://chongjiange.github.io/" target="_blank">Chongjian Ge</a><sup>2</sup>,
|
| 51 |
+
<a href="https://www.cs.unc.edu/~airsplay/" target="_blank">Hao Tan</a><sup>2</sup>,
|
| 52 |
+
<a href="https://pages.cs.wisc.edu/~fliu/" target="_blank">Feng Liu</a><sup>2</sup>,
|
| 53 |
+
<a href="https://yiconghong.me" target="_blank">Yicong Hong</a><sup>2</sup>
|
| 54 |
+
|
| 55 |
+
<sup>1</sup>Australian Institute for Machine Learning, Adelaide University
|
| 56 |
+
<sup>2</sup>Adobe Research
|
| 57 |
+
|
| 58 |
+
[](https://arxiv.org/abs/2512.06421)
|
| 59 |
+
[](https://huggingface.co/ZGZzz/SAR)
|
| 60 |
+
[](https://gengzezhou.github.io/SAR)
|
| 61 |
+
[](https://opensource.org/licenses/MIT)
|
| 62 |
+
|
| 63 |
+
</div>
|
| 64 |
+
|
| 65 |
+
## Model Description
|
| 66 |
+
|
| 67 |
+
**Self-Autoregressive Refinement (SAR)** is a lightweight *post-training* algorithm for **scale-wise autoregressive (AR)** image generation (next-scale prediction). SAR mitigates **exposure bias** by addressing (1) train–test mismatch (teacher forcing vs. student forcing) and (2) imbalance in scale-wise learning difficulty.
|
| 68 |
+
|
| 69 |
+
SAR consists of:
|
| 70 |
+
- **Stagger-Scale Rollout (SSR):** a two-step rollout (teacher-forcing → student-forcing) with minimal compute overhead (one extra forward pass).
|
| 71 |
+
- **Contrastive Student-Forcing Loss (CSFL):** stabilizes student-forced training by aligning predictions with a teacher trajectory under self-generated contexts.
|
| 72 |
+
|
| 73 |
+
## Key Features
|
| 74 |
+
|
| 75 |
+
- **Minimal overhead:** SSR adds only a lightweight additional forward pass to train on self-generated content.
|
| 76 |
+
- **General post-training recipe:** applies on top of pretrained scale-wise AR models.
|
| 77 |
+
- **Empirical gains:** e.g., reported **5.2% FID reduction** on FlexVAR-d16 with 10 SAR epochs.
|
| 78 |
+
|
| 79 |
+
## Model Zoo (ImageNet 256×256)
|
| 80 |
+
|
| 81 |
+
| Model | Params | Base FID ↓ | SAR FID ↓ | SAR Weights |
|
| 82 |
+
|---|---:|---:|---:|---|
|
| 83 |
+
| SAR-d16 | 310M | 3.05 | **2.89** | `pretrained/SARd16-epo179.pth` |
|
| 84 |
+
| SAR-d20 | 600M | 2.41 | **2.35** | `pretrained/SARd20-epo249.pth` |
|
| 85 |
+
| SAR-d24 | 1.0B | 2.21 | **2.14** | `pretrained/SARd24-epo349.pth` |
|
| 86 |
+
|
| 87 |
+
## How to Use
|
| 88 |
+
|
| 89 |
+
### Installation
|
| 90 |
+
|
| 91 |
+
```bash
|
| 92 |
+
git clone https://github.com/GengzeZhou/SAR.git
|
| 93 |
+
conda create -n sar python=3.10 -y
|
| 94 |
+
conda activate sar
|
| 95 |
+
pip install -r requirements.txt
|
| 96 |
+
# optional
|
| 97 |
+
pip install flash-attn xformers
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
### Sampling / Inference (Example)
|
| 101 |
+
|
| 102 |
+
```python
|
| 103 |
+
import torch
|
| 104 |
+
from models import build_vae_var
|
| 105 |
+
from torchvision.utils import save_image
|
| 106 |
+
|
| 107 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 108 |
+
|
| 109 |
+
# Build VAE + VAR backbone (example: depth=16)
|
| 110 |
+
vae, model = build_vae_var(
|
| 111 |
+
V=8912, Cvae=32, device=device,
|
| 112 |
+
num_classes=1000, depth=16,
|
| 113 |
+
vae_ckpt="pretrained/FlexVAE.pth",
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# Load SAR checkpoint
|
| 117 |
+
ckpt = torch.load("pretrained/SARd16-epo179.pth", map_location="cpu")
|
| 118 |
+
if "trainer" in ckpt:
|
| 119 |
+
ckpt = ckpt["trainer"]["var_wo_ddp"]
|
| 120 |
+
model.load_state_dict(ckpt, strict=False)
|
| 121 |
+
model.eval()
|
| 122 |
+
|
| 123 |
+
with torch.no_grad():
|
| 124 |
+
labels = torch.tensor([207, 88, 360, 387], device=device) # example ImageNet classes
|
| 125 |
+
images = model.autoregressive_infer_cfg(
|
| 126 |
+
vqvae=vae,
|
| 127 |
+
B=4,
|
| 128 |
+
label_B=labels,
|
| 129 |
+
cfg=2.5,
|
| 130 |
+
top_k=900,
|
| 131 |
+
top_p=0.95,
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
save_image(images, "samples.png", normalize=True, value_range=(-1, 1), nrow=4)
|
| 135 |
+
```
|
| 136 |
+
|
| 137 |
+
## Training (SAR Post-Training)
|
| 138 |
+
|
| 139 |
+
```bash
|
| 140 |
+
bash scripts/train_SAR_d16.sh
|
| 141 |
+
bash scripts/train_SAR_d20.sh
|
| 142 |
+
bash scripts/train_SAR_d24.sh
|
| 143 |
+
```
|
| 144 |
+
|
| 145 |
+
## Evaluation
|
| 146 |
+
|
| 147 |
+
```bash
|
| 148 |
+
bash scripts/setup_eval.sh
|
| 149 |
+
bash scripts/eval_SAR_d16.sh
|
| 150 |
+
bash scripts/eval_SAR_d20.sh
|
| 151 |
+
bash scripts/eval_SAR_d24.sh
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
## Acknowledgements
|
| 155 |
+
|
| 156 |
+
This codebase builds upon **VAR** and **FlexVAR**.
|
| 157 |
+
|
| 158 |
+
## Citation
|
| 159 |
+
|
| 160 |
+
```bibtex
|
| 161 |
+
@article{zhou2025rethinking,
|
| 162 |
+
title={Rethinking Training Dynamics in Scale-wise Autoregressive Generation},
|
| 163 |
+
author={Zhou, Gengze and Ge, Chongjian and Tan, Hao and Liu, Feng and Hong, Yicong},
|
| 164 |
+
journal={arXiv preprint arXiv:2512.06421},
|
| 165 |
+
year={2025}
|
| 166 |
+
}
|
| 167 |
+
```
|