Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,39 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# π§ Phi-2 GPTQ (Quantized)
|
| 2 |
+
|
| 3 |
+
This repository provides a 4-bit GPTQ quantized version of the **Phi-2** model by Microsoft, optimized for efficient inference using `gptqmodel`.
|
| 4 |
+
|
| 5 |
+
## π Model Details
|
| 6 |
+
|
| 7 |
+
- **Base Model**: Microsoft Phi-2
|
| 8 |
+
- **Quantization**: GPTQ (4-bit)
|
| 9 |
+
- **Quantizer**: `GPTQModel`
|
| 10 |
+
- **Framework**: PyTorch + HuggingFace Transformers
|
| 11 |
+
- **Device Support**: CUDA (GPU)
|
| 12 |
+
- **License**: Apache 2.0
|
| 13 |
+
|
| 14 |
+
## π Features
|
| 15 |
+
|
| 16 |
+
- β
Lightweight: 4-bit quantization significantly reduces memory usage
|
| 17 |
+
- β
Fast Inference: Ideal for deployment on consumer GPUs
|
| 18 |
+
- β
Compatible: Works with `transformers`, `optimum`, and `gptqmodel`
|
| 19 |
+
- β
CUDA-accelerated: Automatically uses GPU for speed
|
| 20 |
+
|
| 21 |
+
## π Usage
|
| 22 |
+
|
| 23 |
+
This model is ready-to-use with the Hugging Face `transformers` library.
|
| 24 |
+
|
| 25 |
+
## π§ͺ Intended Use
|
| 26 |
+
|
| 27 |
+
- Research and development
|
| 28 |
+
- Prototyping generative applications
|
| 29 |
+
- Fast inference environments with limited GPU memory
|
| 30 |
+
|
| 31 |
+
## π References
|
| 32 |
+
|
| 33 |
+
- Microsoft Phi-2: https://huggingface.co/microsoft/phi-2
|
| 34 |
+
- GPTQModel: https://github.com/ModelCoud/GPTQModel
|
| 35 |
+
- Transformers: https://github.com/huggingface/transformers
|
| 36 |
+
|
| 37 |
+
## βοΈ License
|
| 38 |
+
|
| 39 |
+
This model is distributed under the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).
|