--- library_name: peft license: apache-2.0 base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct tags: - base_model:adapter:HuggingFaceTB/SmolLM2-1.7B-Instruct - transformers pipeline_tag: text-generation model-index: - name: SmolLM2-1.7B-Instruct-tuned results: [] --- # SmolLM2-1.7B-Instruct-tuned This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4442 - Perplexity: 4.2384 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Perplexity | |:-------------:|:------:|:----:|:---------------:|:----------:| | No log | 0 | 0 | 3.1117 | 22.4598 | | No log | 0.6011 | 333 | 1.5821 | 4.8650 | | 1.6345 | 1.2022 | 666 | 1.5242 | 4.5915 | | 1.6345 | 1.8032 | 999 | 1.4899 | 4.4364 | | 1.4894 | 2.4043 | 1332 | 1.4634 | 4.3205 | | 1.4894 | 3 | 1664 | 1.4442 | 4.2384 | ### Framework versions - PEFT 0.16.0 - Transformers 4.54.1 - Pytorch 2.7.1+cu128 - Datasets 4.0.0 - Tokenizers 0.21.4