Transfer model via script
Browse files- .gitattributes +1 -0
- README.md +290 -0
- added_tokens.json +24 -0
- chat_template.jinja +7 -0
- config.json +89 -0
- configuration_llavaonevision1_5.py +288 -0
- generation_config.json +10 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +705 -0
- modeling_llavaonevision1_5.py +0 -0
- preprocessor_config.json +29 -0
- special_tokens_map.json +31 -0
- tensorboard/instruct/README.md +0 -0
- tensorboard/instruct/events.out.tfevents.1758101239.109436.0 +3 -0
- tokenizer.json +3 -0
- tokenizer_config.json +208 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model:
|
| 3 |
+
- DeepGlint-AI/rice-vit-large-patch14-560
|
| 4 |
+
- Qwen/Qwen3-4B-Instruct-2507
|
| 5 |
+
datasets:
|
| 6 |
+
- lmms-lab/LLaVA-One-Vision-1.5-Mid-Training-85M
|
| 7 |
+
- lmms-lab/LLaVA-OneVision-1.5-Insturct-Data
|
| 8 |
+
- HuggingFaceM4/FineVision
|
| 9 |
+
library_name: transformers
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
pipeline_tag: image-text-to-text
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
<div align="center">
|
| 15 |
+
|
| 16 |
+
<h1>LLaVA-OneVision-1.5: Fully Open-Source State-of-the-Art VLM Model</h1>
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
<p>
|
| 20 |
+
<a href="https://huggingface.co/papers/2509.23661">
|
| 21 |
+
<img alt="Paper" src="https://img.shields.io/badge/Paper-b31b1b?style=for-the-badge&logo=arXiv&logoColor=white">
|
| 22 |
+
</a>
|
| 23 |
+
<a href="https://github.com/EvolvingLMMs-Lab/LLaVA-OneVision-1.5">
|
| 24 |
+
<img alt="Code" src="https://img.shields.io/badge/Code-181717?style=for-the-badge&logo=github&logoColor=white">
|
| 25 |
+
</a>
|
| 26 |
+
<a href="https://huggingface.co/datasets/mvp-lab/LLaVA-OneVision-1.5-Mid-Training-85M">
|
| 27 |
+
<img alt="Mid-Training Dataset" src="https://img.shields.io/badge/Mid--Training%20Dataset-f59e0b?style=for-the-badge&logo=huggingface&logoColor=white">
|
| 28 |
+
</a>
|
| 29 |
+
<a href="https://huggingface.co/datasets/mvp-lab/LLaVA-OneVision-1.5-Instruct-Data">
|
| 30 |
+
<img alt="Instruct Dataset" src="https://img.shields.io/badge/Instruct%20Dataset-3fb950?style=for-the-badge&logo=huggingface&logoColor=white">
|
| 31 |
+
</a>
|
| 32 |
+
<a href="https://huggingface.co/spaces/lmms-lab/LLaVA-OneVision-1.5">
|
| 33 |
+
<img alt="Demo" src="https://img.shields.io/badge/Demo-1f6feb?style=for-the-badge&logo=huggingface&logoColor=white">
|
| 34 |
+
</a>
|
| 35 |
+
<a href="https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-4B-Instruct/tensorboard">
|
| 36 |
+
<img alt="TensorBoard" src="https://img.shields.io/badge/TensorBoard-FF6F00?style=for-the-badge&logo=tensorflow&logoColor=white">
|
| 37 |
+
</a>
|
| 38 |
+
</p>
|
| 39 |
+
|
| 40 |
+
</div>
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
## Introduction
|
| 45 |
+
|
| 46 |
+
LLaVA-OneVision-1.5 is a fully open-source family of large multimodal models (LMMs) built to democratize multimodal training. Trained on native‑resolution images, it delivers state‑of‑the‑art performance at substantially lower cost. The project also releases high‑quality pretraining and SFT data, a complete and efficient training framework with recipes and configs, and comprehensive logs to support transparent, reproducible research.
|
| 47 |
+
#### **Superior Performance**
|
| 48 |
+
- The model leads on multiple multimodal benchmarks and generally surpasses Qwen2.5-VL.
|
| 49 |
+
- Training on native-resolution images significantly improves its visual understanding.
|
| 50 |
+
|
| 51 |
+
#### **High-Quality Data at Scale**
|
| 52 |
+
- The pretraining corpus comprises large-scale, concept-balanced, diverse, and high-quality captions curated with strict filtering and quality control.
|
| 53 |
+
- The instruction-tuning dataset is comprehensive and covers a wide range of tasks.
|
| 54 |
+
|
| 55 |
+
#### **Ultra-Efficient Training Framework**
|
| 56 |
+
- The end-to-end training cost is about $16,000 on A100 GPUs at roughly $0.60 per GPU-hour.
|
| 57 |
+
- The system is built on Megatron-LM with support for MoE, FP8, and long-sequence parallelism, and the codebase is optimized for cost-effective scaling.
|
| 58 |
+
|
| 59 |
+
#### **Fully Open Framework**
|
| 60 |
+
- The project releases high-quality pretraining and SFT datasets along with the complete training framework, configurations, and recipes.
|
| 61 |
+
- It also provides detailed training logs and metrics to enable reproducibility and community adoption.
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
## Models
|
| 65 |
+
|
| 66 |
+
| Model | HF Link | Training Log |
|
| 67 |
+
|---|---|---|
|
| 68 |
+
| LLaVA-OV-1.5-4B-Instruct | [🤗 HF / 4B-Instruct](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-4B-Instruct) | [📈 Tensorboard](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-4B-Instruct/tensorboard) |
|
| 69 |
+
| LLaVA-OV-1.5-8B-Instruct | [🤗 HF / 8B-Instruct](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-8B-Instruct) | [📈 Tensorboard](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-8B-Instruct/tensorboard) |
|
| 70 |
+
|
| 71 |
+
## Dataset
|
| 72 |
+
|
| 73 |
+
| Description | Link | Status |
|
| 74 |
+
|--------------------|--------------------------------------------------------------------------------------------------------|-------------|
|
| 75 |
+
| LLaVA-OneVision-1.5-Mid-Training-85M | [🤗HF / Mid-Training 85M](https://huggingface.co/datasets/mvp-lab/LLaVA-OneVision-1.5-Mid-Training-85M) | Uploading… |
|
| 76 |
+
| LLaVA-OneVision-1.5-Instruct | [🤗HF / Instruct-Data](https://huggingface.co/datasets/mvp-lab/LLaVA-OneVision-1.5-Instruct-Data) | Available |
|
| 77 |
+
|
| 78 |
+
## Evaluation Results
|
| 79 |
+
All evaluations were conducted using [lmms_eval](https://github.com/EvolvingLMMs-Lab/lmms-eval).
|
| 80 |
+
|
| 81 |
+

|
| 82 |
+
|
| 83 |
+
## Quick Start with HuggingFace
|
| 84 |
+
|
| 85 |
+
Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`:
|
| 86 |
+
|
| 87 |
+
```python
|
| 88 |
+
from transformers import AutoTokenizer, AutoProcessor, AutoModelForCausalLM
|
| 89 |
+
from qwen_vl_utils import process_vision_info
|
| 90 |
+
model_path = "lmms-lab/LLaVA-One-Vision-1.5-8B-Instruct"
|
| 91 |
+
|
| 92 |
+
# default: Load the model on the available device(s)
|
| 93 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 94 |
+
model_path, torch_dtype="auto", device_map="auto", trust_remote_code=True
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# default processer
|
| 98 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
| 99 |
+
|
| 100 |
+
messages = [
|
| 101 |
+
{
|
| 102 |
+
"role": "user",
|
| 103 |
+
"content": [
|
| 104 |
+
{
|
| 105 |
+
"type": "image",
|
| 106 |
+
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
|
| 107 |
+
},
|
| 108 |
+
{"type": "text", "text": "Describe this image."},
|
| 109 |
+
],
|
| 110 |
+
}
|
| 111 |
+
]
|
| 112 |
+
|
| 113 |
+
# Preparation for inference
|
| 114 |
+
text = processor.apply_chat_template(
|
| 115 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 116 |
+
)
|
| 117 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 118 |
+
inputs = processor(
|
| 119 |
+
text=[text],
|
| 120 |
+
images=image_inputs,
|
| 121 |
+
videos=video_inputs,
|
| 122 |
+
padding=True,
|
| 123 |
+
return_tensors="pt",
|
| 124 |
+
)
|
| 125 |
+
inputs = inputs.to("cuda")
|
| 126 |
+
|
| 127 |
+
# Inference: Generation of the output
|
| 128 |
+
generated_ids = model.generate(**inputs, max_new_tokens=1024)
|
| 129 |
+
generated_ids_trimmed = [
|
| 130 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 131 |
+
]
|
| 132 |
+
output_text = processor.batch_decode(
|
| 133 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 134 |
+
)
|
| 135 |
+
print(output_text)
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
## Evaluation
|
| 139 |
+
```
|
| 140 |
+
# pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git
|
| 141 |
+
|
| 142 |
+
accelerate launch --num_processes=8 --main_process_port 12399 -m lmms_eval \
|
| 143 |
+
--model=llava_onevision1_5 \
|
| 144 |
+
--model_args=pretrained=lmms-lab/LLaVA-OneVision-1.5-8B-Instruct,attn_implementation=flash_attention_2,max_pixels=3240000 \
|
| 145 |
+
--tasks=mmmu_val,mmmu_pro_standard,mmbench_en_test,mmerealworld,mmerealworld_cn,ai2d,ai2d_no_mask,vstar_bench,chartqa,charxiv,docvqa_test,mathvista_testmini,mmstar,scienceqa \
|
| 146 |
+
--batch_size=1
|
| 147 |
+
```
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
### Mid-Training
|
| 152 |
+
|
| 153 |
+
To improve model training efficiency, we implement offline sample packing:
|
| 154 |
+
|
| 155 |
+
1. Download the [**Mid-Training-85M Dataset**](https://huggingface.co/datasets/lmms-lab/LLaVA-One-Vision-1.5-Mid-Training-85M)
|
| 156 |
+
2. Pack the data into webdataset format, refer to [**Examples offlinepacking**](examples_offline_packing) and [**Offline Padding-Free Data Packing**](examples/llava_ov_1_5/sample_packing/README.md)
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
### Instruct
|
| 160 |
+
1. Download the [**LLaVA-OneVision-1.5-Insturct-Data**](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-1.5-Insturct-Data)
|
| 161 |
+
2. Convert the data into webdataset format, refer to [**Conversion for Mixed Instruction Data**](docs/sft_data_preprocessing.md)
|
| 162 |
+
|
| 163 |
+
## Roadmaps
|
| 164 |
+
|
| 165 |
+
Q4 2025 Key Deliverables:
|
| 166 |
+
|
| 167 |
+
1. **Ultra-efficient MoE Training**
|
| 168 |
+
2. **Full Video Input LLM**
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
## Contributors
|
| 172 |
+
Thanks so much to all of our amazing contributors!
|
| 173 |
+
|
| 174 |
+
<!-- readme: collaborators,contributors,jiankangdeng/- -start -->
|
| 175 |
+
<table>
|
| 176 |
+
<tbody>
|
| 177 |
+
<tr>
|
| 178 |
+
<td align="center">
|
| 179 |
+
<a href="https://github.com/fdcp">
|
| 180 |
+
<img src="https://avatars.githubusercontent.com/u/15667917?v=4" width="80;" alt="fdcp"/>
|
| 181 |
+
<br />
|
| 182 |
+
<sub><b>fdcp</b></sub>
|
| 183 |
+
</a>
|
| 184 |
+
</td>
|
| 185 |
+
<td align="center">
|
| 186 |
+
<a href="https://github.com/anxiangsir">
|
| 187 |
+
<img src="https://avatars.githubusercontent.com/u/31175974?v=4" width="80;" alt="anxiangsir"/>
|
| 188 |
+
<br />
|
| 189 |
+
<sub><b>anxiangsir</b></sub>
|
| 190 |
+
</a>
|
| 191 |
+
</td>
|
| 192 |
+
<td align="center">
|
| 193 |
+
<a href="https://github.com/yiyexy">
|
| 194 |
+
<img src="https://avatars.githubusercontent.com/u/35927125?v=4" width="80;" alt="yiyexy"/>
|
| 195 |
+
<br />
|
| 196 |
+
<sub><b>yiyexy</b></sub>
|
| 197 |
+
</a>
|
| 198 |
+
</td>
|
| 199 |
+
<td align="center">
|
| 200 |
+
<a href="https://github.com/wideyard">
|
| 201 |
+
<img src="https://avatars.githubusercontent.com/u/101321826?v=4" width="80;" alt="wideyard"/>
|
| 202 |
+
<br />
|
| 203 |
+
<sub><b>wideyard</b></sub>
|
| 204 |
+
</a>
|
| 205 |
+
</td>
|
| 206 |
+
<td align="center">
|
| 207 |
+
<a href="https://github.com/chengzheng345">
|
| 208 |
+
<img src="https://avatars.githubusercontent.com/u/209475443?v=4" width="80;" alt="chengzheng345"/>
|
| 209 |
+
<br />
|
| 210 |
+
<sub><b>chengzheng345</b></sub>
|
| 211 |
+
</a>
|
| 212 |
+
</td>
|
| 213 |
+
<td align="center">
|
| 214 |
+
<a href="https://github.com/killTheHostage">
|
| 215 |
+
<img src="https://avatars.githubusercontent.com/u/16442720?v=4" width="80;" alt="killTheHostage"/>
|
| 216 |
+
<br />
|
| 217 |
+
<sub><b>killTheHostage</b></sub>
|
| 218 |
+
</a>
|
| 219 |
+
</td>
|
| 220 |
+
<td align="center">
|
| 221 |
+
<a href="https://github.com/mathCrazyy">
|
| 222 |
+
<img src="https://avatars.githubusercontent.com/u/20607153?v=4" width="80;" alt="mathCrazyy"/>
|
| 223 |
+
<br />
|
| 224 |
+
<sub><b>mathCrazyy</b></sub>
|
| 225 |
+
</a>
|
| 226 |
+
</td>
|
| 227 |
+
<td align="center">
|
| 228 |
+
<a href="https://github.com/yunglechao">
|
| 229 |
+
<img src="https://avatars.githubusercontent.com/u/7631185?v=4" width="80;" alt="yunglechao"/>
|
| 230 |
+
<br />
|
| 231 |
+
<sub><b>yunglechao</b></sub>
|
| 232 |
+
</a>
|
| 233 |
+
</td>
|
| 234 |
+
</tr>
|
| 235 |
+
<tr>
|
| 236 |
+
<td align="center">
|
| 237 |
+
<a href="https://github.com/RobitYadda">
|
| 238 |
+
<img src="https://avatars.githubusercontent.com/u/6811311?v=4" width="80;" alt="RobitYadda"/>
|
| 239 |
+
<br />
|
| 240 |
+
<sub><b>RobitYadda</b></sub>
|
| 241 |
+
</a>
|
| 242 |
+
</td>
|
| 243 |
+
</tr>
|
| 244 |
+
<tbody>
|
| 245 |
+
</table>
|
| 246 |
+
<!-- readme: collaborators,contributors,jiankangdeng/- -end -->
|
| 247 |
+
|
| 248 |
+
## Citation
|
| 249 |
+
|
| 250 |
+
If you find *LLaVA-OneVision-1.5* useful in your research, please consider to cite the following related papers:
|
| 251 |
+
|
| 252 |
+
```
|
| 253 |
+
@inproceedings{LLaVA-OneVision-1.5,
|
| 254 |
+
title={LLaVA-OneVision-1.5: Fully Open Framework for Democratized Multimodal Training},
|
| 255 |
+
author={An, Xiang and Xie, Yin and Yang, Kaicheng and Zhang, Wenkang and Zhao, Xiuwei and Cheng, Zheng and Wang, Yirui and Xu, Songcen and Chen, Changrui and Wu, Chunsheng and Tan, Huajie and Li, Chunyuan and Yang, Jing and Yu, Jie and Wang, Xiyao and Qin, Bin and Wang, Yumeng and Yan, Zizhen and Feng, Ziyong and Liu, Ziwei and Li, Bo and Deng, Jiankang},
|
| 256 |
+
booktitle={arxiv},
|
| 257 |
+
year={2025}
|
| 258 |
+
}
|
| 259 |
+
|
| 260 |
+
@inproceedings{xie2025region,
|
| 261 |
+
title={Region-based Cluster Discrimination for Visual Representation Learning},
|
| 262 |
+
author={Xie, Yin and Yang, Kaicheng and An, Xiang and Wu, Kun and Zhao, Yongle and Deng, Weimo and Ran, Zimin and Wang, Yumeng and Feng, Ziyong and Miles, Roy and Elezi, Ismail and Deng, Jiankang},
|
| 263 |
+
booktitle={ICCV},
|
| 264 |
+
year={2025}
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
@article{lillava,
|
| 268 |
+
title={LLaVA-OneVision: Easy Visual Task Transfer},
|
| 269 |
+
author={Li, Bo and Zhang, Yuanhan and Guo, Dong and Zhang, Renrui and Li, Feng and Zhang, Hao and Zhang, Kaichen and Zhang, Peiyuan and Li, Yanwei and Liu, Ziwei and Li, Chunyuan},
|
| 270 |
+
journal={Transactions on Machine Learning Research}
|
| 271 |
+
year={2024}
|
| 272 |
+
}
|
| 273 |
+
```
|
| 274 |
+
|
| 275 |
+
## Acknowledgement
|
| 276 |
+
|
| 277 |
+
We extend our sincere gratitude to **AIAK team of the** [**Baige AI computing platform**](https://cloud.baidu.com/product/aihc.html) **from Baidu AI Cloud** for providing the exceptional training framework. The outstanding capabilities of AIAK-Training-LLM and AIAK-Megatron have significantly accelerated our training process with remarkable efficiency. These cutting-edge frameworks have been instrumental in achieving our research goals. `To get full AIAK support, you can contact Baidu Cloud.`
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
We also thank the maintainers and contributors of the following open-source projects, whose work greatly inspired and supported our research:
|
| 281 |
+
|
| 282 |
+
- LLaVA: Large Language-and-Vision Assistant — [LLaVA](https://github.com/haotian-liu/LLaVA)
|
| 283 |
+
- LLaVA-NeXT: Next-generation multi-modal assistant — [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT)
|
| 284 |
+
- lmms-eval: A standardized evaluation framework for Large Multimodal Models — [lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval)
|
| 285 |
+
- Megatron-LM: Efficient, scalable training for large language models — [Megatron-LM](https://github.com/NVIDIA/Megatron-LM)
|
| 286 |
+
- Qwen2.5-VL: Strong vision-language foundation model — [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL)
|
| 287 |
+
- InternVL: Open-source large-scale vision-language foundation model — [InternVL](https://github.com/OpenGVLab/InternVL)
|
| 288 |
+
- Qwen3: Next-generation Qwen LLM — [Qwen](https://github.com/QwenLM/Qwen)
|
| 289 |
+
- MetaCLIP: Scalable contrastive pretraining — [MetaCLIP](https://github.com/facebookresearch/MetaCLIP)
|
| 290 |
+
- FineVision: Open Data Is All You Need — [FineVision](https://huggingface.co/spaces/HuggingFaceM4/FineVision)
|
added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system
|
| 2 |
+
You are a helpful assistant.<|im_end|>
|
| 3 |
+
{% endif %}<|im_start|>{{ message['role'] }}
|
| 4 |
+
{% if message['content'] is string %}{{ message['content'] }}<|im_end|>
|
| 5 |
+
{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>
|
| 6 |
+
{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant
|
| 7 |
+
{% endif %}
|
config.json
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"LLaVAOneVision1_5_ForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"image_token_id": 151655,
|
| 6 |
+
"model_type": "llavaonevision1_5",
|
| 7 |
+
"text_config": {
|
| 8 |
+
"attention_bias": false,
|
| 9 |
+
"attention_dropout": 0.0,
|
| 10 |
+
"head_dim": 128,
|
| 11 |
+
"hidden_act": "silu",
|
| 12 |
+
"hidden_size": 2560,
|
| 13 |
+
"image_token_id": null,
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 9728,
|
| 16 |
+
"layer_types": [
|
| 17 |
+
"full_attention",
|
| 18 |
+
"full_attention",
|
| 19 |
+
"full_attention",
|
| 20 |
+
"full_attention",
|
| 21 |
+
"full_attention",
|
| 22 |
+
"full_attention",
|
| 23 |
+
"full_attention",
|
| 24 |
+
"full_attention",
|
| 25 |
+
"full_attention",
|
| 26 |
+
"full_attention",
|
| 27 |
+
"full_attention",
|
| 28 |
+
"full_attention",
|
| 29 |
+
"full_attention",
|
| 30 |
+
"full_attention",
|
| 31 |
+
"full_attention",
|
| 32 |
+
"full_attention",
|
| 33 |
+
"full_attention",
|
| 34 |
+
"full_attention",
|
| 35 |
+
"full_attention",
|
| 36 |
+
"full_attention",
|
| 37 |
+
"full_attention",
|
| 38 |
+
"full_attention",
|
| 39 |
+
"full_attention",
|
| 40 |
+
"full_attention",
|
| 41 |
+
"full_attention",
|
| 42 |
+
"full_attention",
|
| 43 |
+
"full_attention",
|
| 44 |
+
"full_attention",
|
| 45 |
+
"full_attention",
|
| 46 |
+
"full_attention",
|
| 47 |
+
"full_attention",
|
| 48 |
+
"full_attention",
|
| 49 |
+
"full_attention",
|
| 50 |
+
"full_attention",
|
| 51 |
+
"full_attention",
|
| 52 |
+
"full_attention"
|
| 53 |
+
],
|
| 54 |
+
"max_position_embeddings": 262144,
|
| 55 |
+
"max_window_layers": 36,
|
| 56 |
+
"model_type": "LLaVAOneVision1_5_text",
|
| 57 |
+
"num_attention_heads": 32,
|
| 58 |
+
"num_hidden_layers": 36,
|
| 59 |
+
"num_key_value_heads": 8,
|
| 60 |
+
"rms_norm_eps": 1e-06,
|
| 61 |
+
"rope_scaling": null,
|
| 62 |
+
"rope_theta": 5000000.0,
|
| 63 |
+
"sliding_window": null,
|
| 64 |
+
"use_cache": true,
|
| 65 |
+
"use_sliding_window": false,
|
| 66 |
+
"video_token_id": null,
|
| 67 |
+
"vocab_size": 151936
|
| 68 |
+
},
|
| 69 |
+
"torch_dtype": "bfloat16",
|
| 70 |
+
"transformers_version": "4.53.0",
|
| 71 |
+
"video_token_id": 151656,
|
| 72 |
+
"vision_config": {
|
| 73 |
+
"depth": 24,
|
| 74 |
+
"embed_dim": 1024,
|
| 75 |
+
"hidden_act": "gelu",
|
| 76 |
+
"hidden_size": 1024,
|
| 77 |
+
"in_channels": 3,
|
| 78 |
+
"initializer_range": 0.02,
|
| 79 |
+
"intermediate_size": 4096,
|
| 80 |
+
"layer_norm_eps": 1e-05,
|
| 81 |
+
"model_type": "rice_vit",
|
| 82 |
+
"num_heads": 16,
|
| 83 |
+
"patch_size": 14,
|
| 84 |
+
"spatial_merge_size": 2,
|
| 85 |
+
"temporal_patch_size": 1,
|
| 86 |
+
"text_hidden_size": 2560
|
| 87 |
+
},
|
| 88 |
+
"vocab_size": 151936
|
| 89 |
+
}
|
configuration_llavaonevision1_5.py
ADDED
|
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from transformers.configuration_utils import PretrainedConfig, layer_type_validation
|
| 16 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 17 |
+
from transformers.utils import logging
|
| 18 |
+
|
| 19 |
+
logger = logging.get_logger(__name__)
|
| 20 |
+
|
| 21 |
+
class RiceConfig(PretrainedConfig):
|
| 22 |
+
model_type = "rice_vit"
|
| 23 |
+
base_config_key = "vision_config"
|
| 24 |
+
|
| 25 |
+
def __init__(
|
| 26 |
+
self,
|
| 27 |
+
depth=24,
|
| 28 |
+
embed_dim=1024,
|
| 29 |
+
hidden_size=1024,
|
| 30 |
+
hidden_act="gelu",
|
| 31 |
+
intermediate_size=4096,
|
| 32 |
+
num_heads=16,
|
| 33 |
+
in_channels=3,
|
| 34 |
+
patch_size=14,
|
| 35 |
+
spatial_merge_size=2,
|
| 36 |
+
temporal_patch_size=1,
|
| 37 |
+
initializer_range=0.02,
|
| 38 |
+
layer_norm_eps=1e-05,
|
| 39 |
+
text_hidden_size=2560,
|
| 40 |
+
**kwargs,
|
| 41 |
+
):
|
| 42 |
+
super().__init__(**kwargs)
|
| 43 |
+
|
| 44 |
+
self.depth = depth
|
| 45 |
+
self.embed_dim = embed_dim
|
| 46 |
+
self.hidden_size = hidden_size
|
| 47 |
+
self.hidden_act = hidden_act
|
| 48 |
+
self.intermediate_size = intermediate_size
|
| 49 |
+
self.num_heads = num_heads
|
| 50 |
+
self.in_channels = in_channels
|
| 51 |
+
self.patch_size = patch_size
|
| 52 |
+
self.spatial_merge_size = spatial_merge_size
|
| 53 |
+
self.temporal_patch_size = temporal_patch_size
|
| 54 |
+
self.initializer_range = initializer_range
|
| 55 |
+
self.layer_norm_eps = layer_norm_eps
|
| 56 |
+
self.text_hidden_size = text_hidden_size
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class LLaVAOneVision1_5_TextConfig(PretrainedConfig):
|
| 60 |
+
r"""
|
| 61 |
+
Args:
|
| 62 |
+
vocab_size (`int`, *optional*, defaults to 152064):
|
| 63 |
+
Vocabulary size of the Qwen2VL model. Defines the number of different tokens that can be represented by the
|
| 64 |
+
`inputs_ids` passed when calling [`Qwen2VLModel`]
|
| 65 |
+
hidden_size (`int`, *optional*, defaults to 8192):
|
| 66 |
+
Dimension of the hidden representations.
|
| 67 |
+
intermediate_size (`int`, *optional*, defaults to 29568):
|
| 68 |
+
Dimension of the MLP representations.
|
| 69 |
+
num_hidden_layers (`int`, *optional*, defaults to 80):
|
| 70 |
+
Number of hidden layers in the Transformer encoder.
|
| 71 |
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
| 72 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 73 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
| 74 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 75 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 76 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 77 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 78 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 79 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
| 80 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 81 |
+
The non-linear activation function (function or string) in the decoder.
|
| 82 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
| 83 |
+
The maximum sequence length that this model might ever be used with.
|
| 84 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 85 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 86 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
| 87 |
+
The epsilon used by the rms normalization layers.
|
| 88 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 89 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 90 |
+
relevant if `config.is_decoder=True`.
|
| 91 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 92 |
+
Whether the model's input and output word embeddings should be tied.
|
| 93 |
+
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
| 94 |
+
The base period of the RoPE embeddings.
|
| 95 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
| 96 |
+
Whether to use sliding window attention.
|
| 97 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
| 98 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
| 99 |
+
max_window_layers (`int`, *optional*, defaults to 80):
|
| 100 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
| 101 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 102 |
+
The dropout ratio for the attention probabilities.
|
| 103 |
+
rope_scaling (`Dict`, *optional*):
|
| 104 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
| 105 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 106 |
+
accordingly.
|
| 107 |
+
Expected contents:
|
| 108 |
+
`rope_type` (`str`):
|
| 109 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
| 110 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
| 111 |
+
`factor` (`float`, *optional*):
|
| 112 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
| 113 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 114 |
+
original maximum pre-trained length.
|
| 115 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
| 116 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
| 117 |
+
pretraining.
|
| 118 |
+
`attention_factor` (`float`, *optional*):
|
| 119 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 120 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
| 121 |
+
`factor` field to infer the suggested value.
|
| 122 |
+
`beta_fast` (`float`, *optional*):
|
| 123 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 124 |
+
ramp function. If unspecified, it defaults to 32.
|
| 125 |
+
`beta_slow` (`float`, *optional*):
|
| 126 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 127 |
+
ramp function. If unspecified, it defaults to 1.
|
| 128 |
+
`short_factor` (`List[float]`, *optional*):
|
| 129 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
| 130 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 131 |
+
size divided by the number of attention heads divided by 2
|
| 132 |
+
`long_factor` (`List[float]`, *optional*):
|
| 133 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
| 134 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 135 |
+
size divided by the number of attention heads divided by 2
|
| 136 |
+
`low_freq_factor` (`float`, *optional*):
|
| 137 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 138 |
+
`high_freq_factor` (`float`, *optional*):
|
| 139 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
| 140 |
+
image_token_id (`int`, *optional*):
|
| 141 |
+
Token index used as placeholder for image embeddings.
|
| 142 |
+
video_token_id (`int`, *optional*):
|
| 143 |
+
Token index used as placeholder for video embeddings.
|
| 144 |
+
|
| 145 |
+
"""
|
| 146 |
+
|
| 147 |
+
model_type = "LLaVAOneVision1_5_text"
|
| 148 |
+
base_config_key = "text_config"
|
| 149 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 150 |
+
# Default tensor parallel plan for base model `Qwen2VL`
|
| 151 |
+
base_model_tp_plan = {
|
| 152 |
+
"layers.*.self_attn.q_proj": "colwise",
|
| 153 |
+
"layers.*.self_attn.k_proj": "colwise",
|
| 154 |
+
"layers.*.self_attn.v_proj": "colwise",
|
| 155 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
| 156 |
+
"layers.*.mlp.gate_proj": "colwise",
|
| 157 |
+
"layers.*.mlp.up_proj": "colwise",
|
| 158 |
+
"layers.*.mlp.down_proj": "rowwise",
|
| 159 |
+
}
|
| 160 |
+
base_model_pp_plan = {
|
| 161 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
| 162 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
| 163 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
def __init__(
|
| 167 |
+
self,
|
| 168 |
+
vocab_size=151936,
|
| 169 |
+
hidden_size=4096,
|
| 170 |
+
intermediate_size=12288,
|
| 171 |
+
num_hidden_layers=36,
|
| 172 |
+
num_attention_heads=32,
|
| 173 |
+
num_key_value_heads=8,
|
| 174 |
+
head_dim=128,
|
| 175 |
+
hidden_act="silu",
|
| 176 |
+
max_position_embeddings=32768,
|
| 177 |
+
initializer_range=0.02,
|
| 178 |
+
rms_norm_eps=1e-06,
|
| 179 |
+
use_cache=True,
|
| 180 |
+
tie_word_embeddings=False,
|
| 181 |
+
rope_theta=1000000.0,
|
| 182 |
+
attention_bias=False,
|
| 183 |
+
use_sliding_window=False,
|
| 184 |
+
sliding_window=None,
|
| 185 |
+
max_window_layers=36,
|
| 186 |
+
attention_dropout=0.0,
|
| 187 |
+
rope_scaling=None,
|
| 188 |
+
layer_types=None,
|
| 189 |
+
image_token_id=None,
|
| 190 |
+
video_token_id=None,
|
| 191 |
+
**kwargs,
|
| 192 |
+
):
|
| 193 |
+
self.vocab_size = vocab_size
|
| 194 |
+
self.max_position_embeddings = max_position_embeddings
|
| 195 |
+
self.hidden_size = hidden_size
|
| 196 |
+
self.intermediate_size = intermediate_size
|
| 197 |
+
self.num_hidden_layers = num_hidden_layers
|
| 198 |
+
self.num_attention_heads = num_attention_heads
|
| 199 |
+
self.use_sliding_window = use_sliding_window
|
| 200 |
+
self.sliding_window = sliding_window
|
| 201 |
+
self.max_window_layers = max_window_layers
|
| 202 |
+
|
| 203 |
+
# for backward compatibility
|
| 204 |
+
if num_key_value_heads is None:
|
| 205 |
+
num_key_value_heads = num_attention_heads
|
| 206 |
+
|
| 207 |
+
self.num_key_value_heads = num_key_value_heads
|
| 208 |
+
self.head_dim = head_dim
|
| 209 |
+
self.hidden_act = hidden_act
|
| 210 |
+
self.initializer_range = initializer_range
|
| 211 |
+
self.rms_norm_eps = rms_norm_eps
|
| 212 |
+
self.use_cache = use_cache
|
| 213 |
+
self.rope_theta = rope_theta
|
| 214 |
+
self.attention_dropout = attention_dropout
|
| 215 |
+
self.rope_scaling = rope_scaling
|
| 216 |
+
self.attention_bias = attention_bias
|
| 217 |
+
self.tie_word_embeddings = tie_word_embeddings
|
| 218 |
+
|
| 219 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 220 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
| 221 |
+
# and change type from 'mrope' to 'default' because `mrope` does default RoPE calculations
|
| 222 |
+
# one can set it to "linear"/"dynamic" etc. to have scaled RoPE
|
| 223 |
+
# TODO: @raushan update config in the hub
|
| 224 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 225 |
+
if self.rope_scaling["type"] == "mrope":
|
| 226 |
+
self.rope_scaling["type"] = "default"
|
| 227 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 228 |
+
rope_config_validation(self, ignore_keys={"mrope_section"})
|
| 229 |
+
self.image_token_id = image_token_id
|
| 230 |
+
self.video_token_id = video_token_id
|
| 231 |
+
|
| 232 |
+
self.layer_types = layer_types
|
| 233 |
+
if self.layer_types is None:
|
| 234 |
+
self.layer_types = [
|
| 235 |
+
"sliding_attention"
|
| 236 |
+
if self.sliding_window is not None and i >= self.max_window_layers
|
| 237 |
+
else "full_attention"
|
| 238 |
+
for i in range(self.num_hidden_layers)
|
| 239 |
+
]
|
| 240 |
+
layer_type_validation(self.layer_types)
|
| 241 |
+
|
| 242 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
class Llavaonevision1_5Config(PretrainedConfig):
|
| 246 |
+
r"""
|
| 247 |
+
Args:
|
| 248 |
+
text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `LLaVAOneVision1_5_TextConfig`):
|
| 249 |
+
The config object or dictionary of the text backbone.
|
| 250 |
+
vision_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `LLaVAOneVision1_5_VisionConfig`):
|
| 251 |
+
The config object or dictionary of the vision backbone.
|
| 252 |
+
image_token_id (`int`, *optional*, defaults to 151655):
|
| 253 |
+
The image token index to encode the image prompt.
|
| 254 |
+
video_token_id (`int`, *optional*, defaults to 151656):
|
| 255 |
+
The video token index to encode the image prompt.
|
| 256 |
+
"""
|
| 257 |
+
|
| 258 |
+
model_type = "llavaonevision1_5"
|
| 259 |
+
sub_configs = {"vision_config": RiceConfig, "text_config": LLaVAOneVision1_5_TextConfig}
|
| 260 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 261 |
+
|
| 262 |
+
def __init__(
|
| 263 |
+
self,
|
| 264 |
+
text_config=None,
|
| 265 |
+
vision_config=None,
|
| 266 |
+
image_token_id=151655,
|
| 267 |
+
video_token_id=151656,
|
| 268 |
+
vocab_size=152064,
|
| 269 |
+
**kwargs,
|
| 270 |
+
):
|
| 271 |
+
if isinstance(vision_config, dict):
|
| 272 |
+
self.vision_config = self.sub_configs["vision_config"](**vision_config)
|
| 273 |
+
elif vision_config is None:
|
| 274 |
+
self.vision_config = self.sub_configs["vision_config"]()
|
| 275 |
+
|
| 276 |
+
if isinstance(text_config, dict):
|
| 277 |
+
self.text_config = self.sub_configs["text_config"](**text_config)
|
| 278 |
+
elif text_config is None:
|
| 279 |
+
# For BC use all kwargs to init `TextConfig`
|
| 280 |
+
self.text_config = self.sub_configs["text_config"](**kwargs)
|
| 281 |
+
|
| 282 |
+
self.image_token_id = image_token_id
|
| 283 |
+
self.video_token_id = video_token_id
|
| 284 |
+
self.vocab_size = vocab_size
|
| 285 |
+
|
| 286 |
+
super().__init__(**kwargs)
|
| 287 |
+
|
| 288 |
+
__all__ = ["Llavaonevision1_5Config", "LLaVAOneVision1_5_TextConfig"]
|
generation_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"pad_token_id": 151643,
|
| 4 |
+
"do_sample": true,
|
| 5 |
+
"eos_token_id": 151645,
|
| 6 |
+
"repetition_penalty": 1.05,
|
| 7 |
+
"temperature": 0.000001,
|
| 8 |
+
"_from_model_config": true,
|
| 9 |
+
"transformers_version": "4.53.0"
|
| 10 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f82cd85dce1f7a8438ff40d84a269a0fa99a0e34a848c7353e18aabd462fcdec
|
| 3 |
+
size 4563695792
|
model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d61103678768e54825eb35862e8b98e25db536bb1b4528e1822a50e5491cd286
|
| 3 |
+
size 4919602640
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,705 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 9483221056
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 66 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 85 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 88 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 91 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 97 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 100 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 101 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 102 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 103 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 105 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 109 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 110 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 111 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 112 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 113 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 114 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 115 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 116 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 117 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 118 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 119 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 120 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 121 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 122 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 123 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 124 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 125 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 126 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 127 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 128 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 129 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 130 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 131 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 132 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 133 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 134 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 135 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 136 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 137 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 138 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 139 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 140 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 141 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 144 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 145 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 146 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 148 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 149 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 150 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 151 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 153 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 154 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 155 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 156 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 157 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 158 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 159 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 160 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 161 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 162 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 163 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 164 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 165 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 166 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 169 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 170 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 172 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 173 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 174 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 175 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 176 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 177 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 178 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 179 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 180 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 181 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 182 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 183 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 184 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 185 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 186 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 187 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 188 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 189 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 190 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 191 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 192 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 193 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 194 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 195 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 196 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 197 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 198 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 199 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 200 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 201 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 202 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 203 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 204 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 205 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 206 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 207 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 208 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 209 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 210 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 211 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 212 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 213 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 214 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 215 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 216 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 217 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 218 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 219 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 220 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 221 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 222 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 223 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 224 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 225 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 226 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 227 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 228 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 229 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 230 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 231 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 232 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 233 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 234 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 235 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 236 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 237 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 238 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 239 |
+
"model.layers.28.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 240 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 241 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 242 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 243 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 244 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 245 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 246 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 247 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 248 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 249 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 250 |
+
"model.layers.29.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 251 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 252 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 253 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 254 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 255 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 256 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 257 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 258 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 259 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 260 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 261 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 262 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 263 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 264 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 265 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 266 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 267 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 268 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 269 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 270 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 272 |
+
"model.layers.30.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 273 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 274 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 275 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 276 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 277 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 278 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 279 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 280 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 281 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 282 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 283 |
+
"model.layers.31.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 284 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 285 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 286 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 287 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 288 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 289 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 290 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 291 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 292 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 293 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 294 |
+
"model.layers.32.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 295 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 296 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 297 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 298 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 299 |
+
"model.layers.32.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 300 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 301 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 302 |
+
"model.layers.32.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 303 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 304 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 305 |
+
"model.layers.33.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 306 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 307 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 308 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 309 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 310 |
+
"model.layers.33.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 311 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 312 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 313 |
+
"model.layers.33.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 314 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 315 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 316 |
+
"model.layers.34.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 317 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 318 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 319 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 320 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 321 |
+
"model.layers.34.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 322 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 323 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 324 |
+
"model.layers.34.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 325 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 326 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 327 |
+
"model.layers.35.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 328 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 329 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 330 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 331 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 332 |
+
"model.layers.35.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 333 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 334 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 335 |
+
"model.layers.35.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 336 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 337 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 338 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 339 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 340 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 341 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 342 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 343 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 344 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 345 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 346 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 347 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 348 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 349 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 350 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 351 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 352 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 353 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 354 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 355 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 356 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 357 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 358 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 359 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 360 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 361 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 362 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 363 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 364 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 365 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 366 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 367 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 368 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 369 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 370 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 371 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 372 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 373 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 374 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 375 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 376 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 377 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 378 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 379 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 380 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 381 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 382 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 383 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 384 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 385 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 386 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 387 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 388 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 389 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 390 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 391 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 392 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 393 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 394 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 395 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 396 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 397 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 398 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 399 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 400 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 401 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 402 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 403 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 404 |
+
"model.norm.weight": "model-00001-of-00002.safetensors",
|
| 405 |
+
"visual.blocks.0.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 406 |
+
"visual.blocks.0.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 407 |
+
"visual.blocks.0.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 408 |
+
"visual.blocks.0.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 409 |
+
"visual.blocks.0.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 410 |
+
"visual.blocks.0.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 411 |
+
"visual.blocks.0.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 412 |
+
"visual.blocks.0.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 413 |
+
"visual.blocks.0.norm1.bias": "model-00002-of-00002.safetensors",
|
| 414 |
+
"visual.blocks.0.norm1.weight": "model-00002-of-00002.safetensors",
|
| 415 |
+
"visual.blocks.0.norm2.bias": "model-00002-of-00002.safetensors",
|
| 416 |
+
"visual.blocks.0.norm2.weight": "model-00002-of-00002.safetensors",
|
| 417 |
+
"visual.blocks.1.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 418 |
+
"visual.blocks.1.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 419 |
+
"visual.blocks.1.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 420 |
+
"visual.blocks.1.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 421 |
+
"visual.blocks.1.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 422 |
+
"visual.blocks.1.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 423 |
+
"visual.blocks.1.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 424 |
+
"visual.blocks.1.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 425 |
+
"visual.blocks.1.norm1.bias": "model-00002-of-00002.safetensors",
|
| 426 |
+
"visual.blocks.1.norm1.weight": "model-00002-of-00002.safetensors",
|
| 427 |
+
"visual.blocks.1.norm2.bias": "model-00002-of-00002.safetensors",
|
| 428 |
+
"visual.blocks.1.norm2.weight": "model-00002-of-00002.safetensors",
|
| 429 |
+
"visual.blocks.10.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 430 |
+
"visual.blocks.10.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 431 |
+
"visual.blocks.10.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 432 |
+
"visual.blocks.10.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 433 |
+
"visual.blocks.10.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 434 |
+
"visual.blocks.10.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 435 |
+
"visual.blocks.10.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 436 |
+
"visual.blocks.10.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 437 |
+
"visual.blocks.10.norm1.bias": "model-00002-of-00002.safetensors",
|
| 438 |
+
"visual.blocks.10.norm1.weight": "model-00002-of-00002.safetensors",
|
| 439 |
+
"visual.blocks.10.norm2.bias": "model-00002-of-00002.safetensors",
|
| 440 |
+
"visual.blocks.10.norm2.weight": "model-00002-of-00002.safetensors",
|
| 441 |
+
"visual.blocks.11.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 442 |
+
"visual.blocks.11.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 443 |
+
"visual.blocks.11.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 444 |
+
"visual.blocks.11.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 445 |
+
"visual.blocks.11.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 446 |
+
"visual.blocks.11.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 447 |
+
"visual.blocks.11.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 448 |
+
"visual.blocks.11.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 449 |
+
"visual.blocks.11.norm1.bias": "model-00002-of-00002.safetensors",
|
| 450 |
+
"visual.blocks.11.norm1.weight": "model-00002-of-00002.safetensors",
|
| 451 |
+
"visual.blocks.11.norm2.bias": "model-00002-of-00002.safetensors",
|
| 452 |
+
"visual.blocks.11.norm2.weight": "model-00002-of-00002.safetensors",
|
| 453 |
+
"visual.blocks.12.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 454 |
+
"visual.blocks.12.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 455 |
+
"visual.blocks.12.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 456 |
+
"visual.blocks.12.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 457 |
+
"visual.blocks.12.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 458 |
+
"visual.blocks.12.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 459 |
+
"visual.blocks.12.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 460 |
+
"visual.blocks.12.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 461 |
+
"visual.blocks.12.norm1.bias": "model-00002-of-00002.safetensors",
|
| 462 |
+
"visual.blocks.12.norm1.weight": "model-00002-of-00002.safetensors",
|
| 463 |
+
"visual.blocks.12.norm2.bias": "model-00002-of-00002.safetensors",
|
| 464 |
+
"visual.blocks.12.norm2.weight": "model-00002-of-00002.safetensors",
|
| 465 |
+
"visual.blocks.13.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 466 |
+
"visual.blocks.13.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 467 |
+
"visual.blocks.13.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 468 |
+
"visual.blocks.13.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 469 |
+
"visual.blocks.13.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 470 |
+
"visual.blocks.13.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 471 |
+
"visual.blocks.13.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 472 |
+
"visual.blocks.13.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 473 |
+
"visual.blocks.13.norm1.bias": "model-00002-of-00002.safetensors",
|
| 474 |
+
"visual.blocks.13.norm1.weight": "model-00002-of-00002.safetensors",
|
| 475 |
+
"visual.blocks.13.norm2.bias": "model-00002-of-00002.safetensors",
|
| 476 |
+
"visual.blocks.13.norm2.weight": "model-00002-of-00002.safetensors",
|
| 477 |
+
"visual.blocks.14.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 478 |
+
"visual.blocks.14.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 479 |
+
"visual.blocks.14.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 480 |
+
"visual.blocks.14.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 481 |
+
"visual.blocks.14.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 482 |
+
"visual.blocks.14.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 483 |
+
"visual.blocks.14.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 484 |
+
"visual.blocks.14.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 485 |
+
"visual.blocks.14.norm1.bias": "model-00002-of-00002.safetensors",
|
| 486 |
+
"visual.blocks.14.norm1.weight": "model-00002-of-00002.safetensors",
|
| 487 |
+
"visual.blocks.14.norm2.bias": "model-00002-of-00002.safetensors",
|
| 488 |
+
"visual.blocks.14.norm2.weight": "model-00002-of-00002.safetensors",
|
| 489 |
+
"visual.blocks.15.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 490 |
+
"visual.blocks.15.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 491 |
+
"visual.blocks.15.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 492 |
+
"visual.blocks.15.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 493 |
+
"visual.blocks.15.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 494 |
+
"visual.blocks.15.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 495 |
+
"visual.blocks.15.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 496 |
+
"visual.blocks.15.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 497 |
+
"visual.blocks.15.norm1.bias": "model-00002-of-00002.safetensors",
|
| 498 |
+
"visual.blocks.15.norm1.weight": "model-00002-of-00002.safetensors",
|
| 499 |
+
"visual.blocks.15.norm2.bias": "model-00002-of-00002.safetensors",
|
| 500 |
+
"visual.blocks.15.norm2.weight": "model-00002-of-00002.safetensors",
|
| 501 |
+
"visual.blocks.16.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 502 |
+
"visual.blocks.16.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 503 |
+
"visual.blocks.16.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 504 |
+
"visual.blocks.16.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 505 |
+
"visual.blocks.16.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 506 |
+
"visual.blocks.16.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 507 |
+
"visual.blocks.16.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 508 |
+
"visual.blocks.16.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 509 |
+
"visual.blocks.16.norm1.bias": "model-00002-of-00002.safetensors",
|
| 510 |
+
"visual.blocks.16.norm1.weight": "model-00002-of-00002.safetensors",
|
| 511 |
+
"visual.blocks.16.norm2.bias": "model-00002-of-00002.safetensors",
|
| 512 |
+
"visual.blocks.16.norm2.weight": "model-00002-of-00002.safetensors",
|
| 513 |
+
"visual.blocks.17.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 514 |
+
"visual.blocks.17.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 515 |
+
"visual.blocks.17.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 516 |
+
"visual.blocks.17.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 517 |
+
"visual.blocks.17.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 518 |
+
"visual.blocks.17.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 519 |
+
"visual.blocks.17.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 520 |
+
"visual.blocks.17.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 521 |
+
"visual.blocks.17.norm1.bias": "model-00002-of-00002.safetensors",
|
| 522 |
+
"visual.blocks.17.norm1.weight": "model-00002-of-00002.safetensors",
|
| 523 |
+
"visual.blocks.17.norm2.bias": "model-00002-of-00002.safetensors",
|
| 524 |
+
"visual.blocks.17.norm2.weight": "model-00002-of-00002.safetensors",
|
| 525 |
+
"visual.blocks.18.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 526 |
+
"visual.blocks.18.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 527 |
+
"visual.blocks.18.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 528 |
+
"visual.blocks.18.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 529 |
+
"visual.blocks.18.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 530 |
+
"visual.blocks.18.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 531 |
+
"visual.blocks.18.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 532 |
+
"visual.blocks.18.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 533 |
+
"visual.blocks.18.norm1.bias": "model-00002-of-00002.safetensors",
|
| 534 |
+
"visual.blocks.18.norm1.weight": "model-00002-of-00002.safetensors",
|
| 535 |
+
"visual.blocks.18.norm2.bias": "model-00002-of-00002.safetensors",
|
| 536 |
+
"visual.blocks.18.norm2.weight": "model-00002-of-00002.safetensors",
|
| 537 |
+
"visual.blocks.19.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 538 |
+
"visual.blocks.19.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 539 |
+
"visual.blocks.19.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 540 |
+
"visual.blocks.19.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 541 |
+
"visual.blocks.19.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 542 |
+
"visual.blocks.19.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 543 |
+
"visual.blocks.19.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 544 |
+
"visual.blocks.19.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 545 |
+
"visual.blocks.19.norm1.bias": "model-00002-of-00002.safetensors",
|
| 546 |
+
"visual.blocks.19.norm1.weight": "model-00002-of-00002.safetensors",
|
| 547 |
+
"visual.blocks.19.norm2.bias": "model-00002-of-00002.safetensors",
|
| 548 |
+
"visual.blocks.19.norm2.weight": "model-00002-of-00002.safetensors",
|
| 549 |
+
"visual.blocks.2.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 550 |
+
"visual.blocks.2.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 551 |
+
"visual.blocks.2.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 552 |
+
"visual.blocks.2.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 553 |
+
"visual.blocks.2.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 554 |
+
"visual.blocks.2.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 555 |
+
"visual.blocks.2.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 556 |
+
"visual.blocks.2.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 557 |
+
"visual.blocks.2.norm1.bias": "model-00002-of-00002.safetensors",
|
| 558 |
+
"visual.blocks.2.norm1.weight": "model-00002-of-00002.safetensors",
|
| 559 |
+
"visual.blocks.2.norm2.bias": "model-00002-of-00002.safetensors",
|
| 560 |
+
"visual.blocks.2.norm2.weight": "model-00002-of-00002.safetensors",
|
| 561 |
+
"visual.blocks.20.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 562 |
+
"visual.blocks.20.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 563 |
+
"visual.blocks.20.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 564 |
+
"visual.blocks.20.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 565 |
+
"visual.blocks.20.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 566 |
+
"visual.blocks.20.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 567 |
+
"visual.blocks.20.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 568 |
+
"visual.blocks.20.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 569 |
+
"visual.blocks.20.norm1.bias": "model-00002-of-00002.safetensors",
|
| 570 |
+
"visual.blocks.20.norm1.weight": "model-00002-of-00002.safetensors",
|
| 571 |
+
"visual.blocks.20.norm2.bias": "model-00002-of-00002.safetensors",
|
| 572 |
+
"visual.blocks.20.norm2.weight": "model-00002-of-00002.safetensors",
|
| 573 |
+
"visual.blocks.21.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 574 |
+
"visual.blocks.21.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 575 |
+
"visual.blocks.21.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 576 |
+
"visual.blocks.21.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 577 |
+
"visual.blocks.21.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 578 |
+
"visual.blocks.21.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 579 |
+
"visual.blocks.21.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 580 |
+
"visual.blocks.21.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 581 |
+
"visual.blocks.21.norm1.bias": "model-00002-of-00002.safetensors",
|
| 582 |
+
"visual.blocks.21.norm1.weight": "model-00002-of-00002.safetensors",
|
| 583 |
+
"visual.blocks.21.norm2.bias": "model-00002-of-00002.safetensors",
|
| 584 |
+
"visual.blocks.21.norm2.weight": "model-00002-of-00002.safetensors",
|
| 585 |
+
"visual.blocks.22.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 586 |
+
"visual.blocks.22.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 587 |
+
"visual.blocks.22.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 588 |
+
"visual.blocks.22.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 589 |
+
"visual.blocks.22.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 590 |
+
"visual.blocks.22.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 591 |
+
"visual.blocks.22.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 592 |
+
"visual.blocks.22.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 593 |
+
"visual.blocks.22.norm1.bias": "model-00002-of-00002.safetensors",
|
| 594 |
+
"visual.blocks.22.norm1.weight": "model-00002-of-00002.safetensors",
|
| 595 |
+
"visual.blocks.22.norm2.bias": "model-00002-of-00002.safetensors",
|
| 596 |
+
"visual.blocks.22.norm2.weight": "model-00002-of-00002.safetensors",
|
| 597 |
+
"visual.blocks.23.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 598 |
+
"visual.blocks.23.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 599 |
+
"visual.blocks.23.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 600 |
+
"visual.blocks.23.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 601 |
+
"visual.blocks.23.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 602 |
+
"visual.blocks.23.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 603 |
+
"visual.blocks.23.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 604 |
+
"visual.blocks.23.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 605 |
+
"visual.blocks.23.norm1.bias": "model-00002-of-00002.safetensors",
|
| 606 |
+
"visual.blocks.23.norm1.weight": "model-00002-of-00002.safetensors",
|
| 607 |
+
"visual.blocks.23.norm2.bias": "model-00002-of-00002.safetensors",
|
| 608 |
+
"visual.blocks.23.norm2.weight": "model-00002-of-00002.safetensors",
|
| 609 |
+
"visual.blocks.3.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 610 |
+
"visual.blocks.3.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 611 |
+
"visual.blocks.3.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 612 |
+
"visual.blocks.3.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 613 |
+
"visual.blocks.3.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 614 |
+
"visual.blocks.3.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 615 |
+
"visual.blocks.3.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 616 |
+
"visual.blocks.3.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 617 |
+
"visual.blocks.3.norm1.bias": "model-00002-of-00002.safetensors",
|
| 618 |
+
"visual.blocks.3.norm1.weight": "model-00002-of-00002.safetensors",
|
| 619 |
+
"visual.blocks.3.norm2.bias": "model-00002-of-00002.safetensors",
|
| 620 |
+
"visual.blocks.3.norm2.weight": "model-00002-of-00002.safetensors",
|
| 621 |
+
"visual.blocks.4.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 622 |
+
"visual.blocks.4.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 623 |
+
"visual.blocks.4.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 624 |
+
"visual.blocks.4.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 625 |
+
"visual.blocks.4.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 626 |
+
"visual.blocks.4.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 627 |
+
"visual.blocks.4.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 628 |
+
"visual.blocks.4.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 629 |
+
"visual.blocks.4.norm1.bias": "model-00002-of-00002.safetensors",
|
| 630 |
+
"visual.blocks.4.norm1.weight": "model-00002-of-00002.safetensors",
|
| 631 |
+
"visual.blocks.4.norm2.bias": "model-00002-of-00002.safetensors",
|
| 632 |
+
"visual.blocks.4.norm2.weight": "model-00002-of-00002.safetensors",
|
| 633 |
+
"visual.blocks.5.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 634 |
+
"visual.blocks.5.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 635 |
+
"visual.blocks.5.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 636 |
+
"visual.blocks.5.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 637 |
+
"visual.blocks.5.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 638 |
+
"visual.blocks.5.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 639 |
+
"visual.blocks.5.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 640 |
+
"visual.blocks.5.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 641 |
+
"visual.blocks.5.norm1.bias": "model-00002-of-00002.safetensors",
|
| 642 |
+
"visual.blocks.5.norm1.weight": "model-00002-of-00002.safetensors",
|
| 643 |
+
"visual.blocks.5.norm2.bias": "model-00002-of-00002.safetensors",
|
| 644 |
+
"visual.blocks.5.norm2.weight": "model-00002-of-00002.safetensors",
|
| 645 |
+
"visual.blocks.6.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 646 |
+
"visual.blocks.6.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 647 |
+
"visual.blocks.6.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 648 |
+
"visual.blocks.6.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 649 |
+
"visual.blocks.6.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 650 |
+
"visual.blocks.6.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 651 |
+
"visual.blocks.6.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 652 |
+
"visual.blocks.6.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 653 |
+
"visual.blocks.6.norm1.bias": "model-00002-of-00002.safetensors",
|
| 654 |
+
"visual.blocks.6.norm1.weight": "model-00002-of-00002.safetensors",
|
| 655 |
+
"visual.blocks.6.norm2.bias": "model-00002-of-00002.safetensors",
|
| 656 |
+
"visual.blocks.6.norm2.weight": "model-00002-of-00002.safetensors",
|
| 657 |
+
"visual.blocks.7.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 658 |
+
"visual.blocks.7.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 659 |
+
"visual.blocks.7.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 660 |
+
"visual.blocks.7.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 661 |
+
"visual.blocks.7.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 662 |
+
"visual.blocks.7.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 663 |
+
"visual.blocks.7.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 664 |
+
"visual.blocks.7.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 665 |
+
"visual.blocks.7.norm1.bias": "model-00002-of-00002.safetensors",
|
| 666 |
+
"visual.blocks.7.norm1.weight": "model-00002-of-00002.safetensors",
|
| 667 |
+
"visual.blocks.7.norm2.bias": "model-00002-of-00002.safetensors",
|
| 668 |
+
"visual.blocks.7.norm2.weight": "model-00002-of-00002.safetensors",
|
| 669 |
+
"visual.blocks.8.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 670 |
+
"visual.blocks.8.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 671 |
+
"visual.blocks.8.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 672 |
+
"visual.blocks.8.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 673 |
+
"visual.blocks.8.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 674 |
+
"visual.blocks.8.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 675 |
+
"visual.blocks.8.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 676 |
+
"visual.blocks.8.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 677 |
+
"visual.blocks.8.norm1.bias": "model-00002-of-00002.safetensors",
|
| 678 |
+
"visual.blocks.8.norm1.weight": "model-00002-of-00002.safetensors",
|
| 679 |
+
"visual.blocks.8.norm2.bias": "model-00002-of-00002.safetensors",
|
| 680 |
+
"visual.blocks.8.norm2.weight": "model-00002-of-00002.safetensors",
|
| 681 |
+
"visual.blocks.9.attn.proj.bias": "model-00002-of-00002.safetensors",
|
| 682 |
+
"visual.blocks.9.attn.proj.weight": "model-00002-of-00002.safetensors",
|
| 683 |
+
"visual.blocks.9.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
| 684 |
+
"visual.blocks.9.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
| 685 |
+
"visual.blocks.9.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 686 |
+
"visual.blocks.9.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 687 |
+
"visual.blocks.9.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 688 |
+
"visual.blocks.9.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 689 |
+
"visual.blocks.9.norm1.bias": "model-00002-of-00002.safetensors",
|
| 690 |
+
"visual.blocks.9.norm1.weight": "model-00002-of-00002.safetensors",
|
| 691 |
+
"visual.blocks.9.norm2.bias": "model-00002-of-00002.safetensors",
|
| 692 |
+
"visual.blocks.9.norm2.weight": "model-00002-of-00002.safetensors",
|
| 693 |
+
"visual.class_embedding": "model-00002-of-00002.safetensors",
|
| 694 |
+
"visual.class_pos_emb": "model-00002-of-00002.safetensors",
|
| 695 |
+
"visual.merger.ln_q.bias": "model-00002-of-00002.safetensors",
|
| 696 |
+
"visual.merger.ln_q.weight": "model-00002-of-00002.safetensors",
|
| 697 |
+
"visual.merger.mlp.0.bias": "model-00002-of-00002.safetensors",
|
| 698 |
+
"visual.merger.mlp.0.weight": "model-00002-of-00002.safetensors",
|
| 699 |
+
"visual.merger.mlp.2.bias": "model-00002-of-00002.safetensors",
|
| 700 |
+
"visual.merger.mlp.2.weight": "model-00002-of-00002.safetensors",
|
| 701 |
+
"visual.patch_embed.proj.weight": "model-00002-of-00002.safetensors",
|
| 702 |
+
"visual.pre_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 703 |
+
"visual.pre_layernorm.weight": "model-00002-of-00002.safetensors"
|
| 704 |
+
}
|
| 705 |
+
}
|
modeling_llavaonevision1_5.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_convert_rgb": true,
|
| 3 |
+
"do_normalize": true,
|
| 4 |
+
"do_rescale": true,
|
| 5 |
+
"do_resize": true,
|
| 6 |
+
"image_mean": [
|
| 7 |
+
0.48145466,
|
| 8 |
+
0.4578275,
|
| 9 |
+
0.40821073
|
| 10 |
+
],
|
| 11 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
| 12 |
+
"image_std": [
|
| 13 |
+
0.26862954,
|
| 14 |
+
0.26130258,
|
| 15 |
+
0.27577711
|
| 16 |
+
],
|
| 17 |
+
"max_pixels": 2560000,
|
| 18 |
+
"merge_size": 2,
|
| 19 |
+
"min_pixels": 3136,
|
| 20 |
+
"patch_size": 14,
|
| 21 |
+
"processor_class": "Qwen2_5_VLProcessor",
|
| 22 |
+
"resample": 3,
|
| 23 |
+
"rescale_factor": 0.00392156862745098,
|
| 24 |
+
"size": {
|
| 25 |
+
"longest_edge": 12845056,
|
| 26 |
+
"shortest_edge": 3136
|
| 27 |
+
},
|
| 28 |
+
"temporal_patch_size": 1
|
| 29 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tensorboard/instruct/README.md
ADDED
|
File without changes
|
tensorboard/instruct/events.out.tfevents.1758101239.109436.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:543ddda0e04e35a6bb2e488bfdd641b2f84cbb814bacc29e0936ae780d0b0ab1
|
| 3 |
+
size 92983372
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
| 3 |
+
size 11421896
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"clean_up_tokenization_spaces": false,
|
| 199 |
+
"eos_token": "<|im_end|>",
|
| 200 |
+
"errors": "replace",
|
| 201 |
+
"extra_special_tokens": {},
|
| 202 |
+
"model_max_length": 131072,
|
| 203 |
+
"pad_token": "<|endoftext|>",
|
| 204 |
+
"processor_class": "Qwen2_5_VLProcessor",
|
| 205 |
+
"split_special_tokens": false,
|
| 206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 207 |
+
"unk_token": null
|
| 208 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|