GZUzxc commited on
Commit
14d2900
·
verified ·
1 Parent(s): 8d4399a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -24
README.md CHANGED
@@ -1,14 +1,14 @@
1
- ---
2
- license: apache-2.0
3
- datasets:
4
- - GZUzxc/TaskDialogData
5
- language:
6
- - en
7
- metrics:
8
- - bleu
9
- base_model:
10
- - deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
11
- ---
12
  ---
13
 
14
  # Model Card for TaskDialogViz
@@ -81,19 +81,26 @@ model = AutoModelForSeq2SeqLM.from_pretrained("GZUzxc/TaskDialogVis_Model", devi
81
 
82
  # Example input: Simulating the second turn of a dialogue.
83
  # The first turn has already generated a bar chart comparing the average sales of different stores.
84
- input_text = (
85
- "<head> <field> Store, Weekly_Sales, Holiday_Flag, Unemployment, CPI </field> <type> nominal, quantitative, nominal, quantitative, quantitative </type> </head>"
86
- "<data> <line 1> 1, 164369, 0, 8.106, 211.28919 </line 1> <line 2> 2, 164195, 1, 7.787, 215.61247 </line 2> </data>"
87
- "<previous utterance> Compare the average sales of different stores? </previous utterance>"
88
- "<previous chart> {'mark': 'bar', 'encoding': {'x': {'field': 'Store'}, 'y': {'field': 'Weekly_Sales', 'aggregate': 'mean'}}} </previous chart>"
89
- "<utterance> Which stores have higher average sales? </utterance>"
90
- )
91
-
92
- # Goal: Perform the first step of reasoning.
93
- # Note: In actual use, the prompt for each step is fixed. This is simplified for demonstration purposes.
94
- prompt_for_step1 = f"{input_text} <step 1> <thinking>"
95
-
96
- inputs = tokenizer(prompt_for_step1, return_tensors="pt", padding=True).to("cuda")
 
 
 
 
 
 
 
97
  outputs = model.generate(**inputs, max_new_tokens=50)
98
 
99
  # The expected output should be 'Modify Chart', as this is a refinement of the previous chart.
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - GZUzxc/TaskDialogData
5
+ language:
6
+ - en
7
+ metrics:
8
+ - bleu
9
+ base_model:
10
+ - deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
11
+ ---
12
  ---
13
 
14
  # Model Card for TaskDialogViz
 
81
 
82
  # Example input: Simulating the second turn of a dialogue.
83
  # The first turn has already generated a bar chart comparing the average sales of different stores.
84
+ input_text =
85
+ """<head> <field> Borough_Location, Park_Location, Sports_Played, Week_Start_Date,
86
+ Week_End_Date, Sunday_Attendance, Monday_Attendance, Tuesday_Attendance,
87
+ Wednesday_Attendance, Thursday_Attendance, Friday_Attendance, Saturday_Attendance,
88
+ Attendance_Sum </field>
89
+ <type> nominal, nominal,nominal,temporal, temporal, quantitative, quantitative, quantitative,
90
+ quantitative, quantitative, quantitative, quantitative,quantitative </type>
91
+ <data> <line 1> Bronx, Midland Beach, Basketball, Soccer, Flag Football, Kickball, 07/01/2018,
92
+ 07/31/2017, 850, 20, 9, 42, 15, 150, 93, 755 </line 1>
93
+ <line 2> Manhattan, Williamsbridge Oval, Basketball, Soccer, Dodgeball, ultimate frisbee, 06/25/2017,
94
+ 04/28/2018, 250, 210, 650, 26, 480, 246, 155, 141 </line 2> </data>
95
+ <previous utterance> Break it down by park location with different colors</previous utterance>
96
+ <previous chart> {'analyzing task': 'Modify Chart', 'field': {'encoding': ['Park_Location',
97
+ 'Friday_Attendance', 'Borough_Location'], 'filter': ['Borough_Location']}, 'operations': ['encoding'],
98
+ 'mark': 'bar', 'encoding': {'x': {'field': 'Borough_Location'}, 'y': {'field': 'Friday_Attendance',
99
+ 'aggregate': 'sum'}, 'color': {'field': 'Park_Location'}}, 'filter': {'eq': ['Borough_Location', 'Manhattan']},
100
+ 'sort': {}} </previous chart>
101
+ <utterance> how does Sunday attendance relate to Friday attendance in Manhattan parks? </utterance>"""
102
+
103
+ inputs = tokenizer(input_text, return_tensors="pt", padding=True).to("cuda")
104
  outputs = model.generate(**inputs, max_new_tokens=50)
105
 
106
  # The expected output should be 'Modify Chart', as this is a refinement of the previous chart.