File size: 2,985 Bytes
ee8dcb1
2f47eeb
 
 
79fd764
 
 
 
 
 
2f47eeb
79fd764
 
 
2f47eeb
 
ee8dcb1
 
 
2f47eeb
ee8dcb1
2f47eeb
ee8dcb1
2f47eeb
 
 
ee8dcb1
2f47eeb
ee8dcb1
2f47eeb
ee8dcb1
2f47eeb
 
ee8dcb1
2f47eeb
 
ee8dcb1
2f47eeb
 
 
 
 
ee8dcb1
2f47eeb
ee8dcb1
2f47eeb
ee8dcb1
2f47eeb
 
 
 
 
 
ee8dcb1
2f47eeb
ee8dcb1
 
 
2f47eeb
 
 
 
 
 
 
 
 
ee8dcb1
2f47eeb
ee8dcb1
 
 
2f47eeb
 
 
 
 
ee8dcb1
2f47eeb
ee8dcb1
2f47eeb
ee8dcb1
2f47eeb
ee8dcb1
2f47eeb
 
 
 
ee8dcb1
2f47eeb
 
 
ee8dcb1
2f47eeb
ee8dcb1
2f47eeb
ee8dcb1
2f47eeb
 
 
ee8dcb1
2f47eeb
ee8dcb1
2f47eeb
ee8dcb1
2f47eeb
ee8dcb1
2f47eeb
 
 
 
 
 
 
 
ee8dcb1
2f47eeb
ee8dcb1
2f47eeb
ee8dcb1
2f47eeb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
language: en
license: mit
tags:
- text2text-generation
- multitask
- genre-classification
- rating-prediction
- title-generation
- t5
metrics:
- accuracy
- rmse
- bleu
base_model: google/t5-small
pipeline_tag: text2text-generation
library_name: transformers
---

# T5 Multitask Model for Book Genre, Rating, and Title Tasks

This model was trained on a custom dataset of book descriptions and titles. It supports:

- `genre:` → classify the genre of a book  
- `rating:` → predict the numeric rating  
- `title:` → generate a book title

---

## Usage

```python
from transformers import T5Tokenizer, T5ForConditionalGeneration

model = T5ForConditionalGeneration.from_pretrained("AbrarFahim75/t5-multitask-book")
tokenizer = T5Tokenizer.from_pretrained("AbrarFahim75/t5-multitask-book")

input_text = "genre: A dark and stormy night in an abandoned castle."
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

---

## Model Details

- **Base model**: [google/t5-small](https://huggingface.co/google/t5-small)
- **Language**: English
- **Model type**: T5 fine-tuned on multi-task dataset (genre, rating, title)
- **License**: MIT
- **Author**: [AbrarFahim75](https://huggingface.co/AbrarFahim75)
- **Repository**: [t5-multitask-book](https://huggingface.co/AbrarFahim75/t5-multitask-book)

---

## Training Details

- **Data source**: Custom CSV with columns: `title`, `description`, `genre`, `rating`
- **Preprocessing**: Merged title and description → formatted prompts like:
  - `"genre: <desc>"`
  - `"rating: <desc>"`
  - `"title: <desc>"`
- **Epochs**: 3
- **Optimizer**: AdamW
- **Batch size**: 8
- **Loss**: Cross-entropy

---

## Evaluation

| Task              | Metric   | Value (sample, dev split) |
|-------------------|----------|----------------------------|
| Genre Classification | Accuracy | ~0.78 (sample set)        |
| Rating Prediction     | RMSE     | ~0.42                     |
| Title Generation      | BLEU     | ~15.3                     |

> ⚠️ These are informal evaluations using validation slices from the dataset.

---

## Intended Use

### Direct Use:
- Classifying book genres from text
- Predicting numeric ratings from descriptions
- Auto-generating book titles

### Out-of-Scope Use:
- Non-book-related input
- Use in high-stakes recommendation without human review

---

## Limitations and Biases

- Trained on a limited dataset of books (genre/bias unknown)
- May underperform on texts outside typical fiction/non-fiction boundaries
- Language is English only

---

## Citation

If you use this model, please cite:

```bibtex
@misc{fahim2025t5bookmultitask,
  title={T5 Multitask for Book Tasks},
  author={Md Abrar Fahim},
  year={2025},
  url={https://huggingface.co/AbrarFahim75/t5-multitask-book}
}
```

---

## Contact

For questions, please reach out at [huggingface.co/AbrarFahim75](https://huggingface.co/AbrarFahim75)