File size: 2,985 Bytes
ee8dcb1 2f47eeb 79fd764 2f47eeb 79fd764 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb ee8dcb1 2f47eeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
---
language: en
license: mit
tags:
- text2text-generation
- multitask
- genre-classification
- rating-prediction
- title-generation
- t5
metrics:
- accuracy
- rmse
- bleu
base_model: google/t5-small
pipeline_tag: text2text-generation
library_name: transformers
---
# T5 Multitask Model for Book Genre, Rating, and Title Tasks
This model was trained on a custom dataset of book descriptions and titles. It supports:
- `genre:` → classify the genre of a book
- `rating:` → predict the numeric rating
- `title:` → generate a book title
---
## Usage
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
model = T5ForConditionalGeneration.from_pretrained("AbrarFahim75/t5-multitask-book")
tokenizer = T5Tokenizer.from_pretrained("AbrarFahim75/t5-multitask-book")
input_text = "genre: A dark and stormy night in an abandoned castle."
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
---
## Model Details
- **Base model**: [google/t5-small](https://huggingface.co/google/t5-small)
- **Language**: English
- **Model type**: T5 fine-tuned on multi-task dataset (genre, rating, title)
- **License**: MIT
- **Author**: [AbrarFahim75](https://huggingface.co/AbrarFahim75)
- **Repository**: [t5-multitask-book](https://huggingface.co/AbrarFahim75/t5-multitask-book)
---
## Training Details
- **Data source**: Custom CSV with columns: `title`, `description`, `genre`, `rating`
- **Preprocessing**: Merged title and description → formatted prompts like:
- `"genre: <desc>"`
- `"rating: <desc>"`
- `"title: <desc>"`
- **Epochs**: 3
- **Optimizer**: AdamW
- **Batch size**: 8
- **Loss**: Cross-entropy
---
## Evaluation
| Task | Metric | Value (sample, dev split) |
|-------------------|----------|----------------------------|
| Genre Classification | Accuracy | ~0.78 (sample set) |
| Rating Prediction | RMSE | ~0.42 |
| Title Generation | BLEU | ~15.3 |
> ⚠️ These are informal evaluations using validation slices from the dataset.
---
## Intended Use
### Direct Use:
- Classifying book genres from text
- Predicting numeric ratings from descriptions
- Auto-generating book titles
### Out-of-Scope Use:
- Non-book-related input
- Use in high-stakes recommendation without human review
---
## Limitations and Biases
- Trained on a limited dataset of books (genre/bias unknown)
- May underperform on texts outside typical fiction/non-fiction boundaries
- Language is English only
---
## Citation
If you use this model, please cite:
```bibtex
@misc{fahim2025t5bookmultitask,
title={T5 Multitask for Book Tasks},
author={Md Abrar Fahim},
year={2025},
url={https://huggingface.co/AbrarFahim75/t5-multitask-book}
}
```
---
## Contact
For questions, please reach out at [huggingface.co/AbrarFahim75](https://huggingface.co/AbrarFahim75)
|