|
|
|
|
|
"""
|
|
|
Stage 1: Semantic Graph → Quantum Graph Embedding
|
|
|
|
|
|
Classical graphs are limited by discrete traversal and memory bottlenecks.
|
|
|
Quantum graphs allow superposition-based traversal and entangled node relationships.
|
|
|
"""
|
|
|
|
|
|
import numpy as np
|
|
|
from typing import Dict, List, Tuple, Optional, Any
|
|
|
import networkx as nx
|
|
|
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
|
|
|
from qiskit.quantum_info import Statevector
|
|
|
from qiskit_aer import AerSimulator
|
|
|
import lambeq
|
|
|
from lambeq import AtomicType, IQPAnsatz
|
|
|
import logging
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class QuantumSemanticGraph:
|
|
|
"""
|
|
|
Quantum-enhanced semantic graph for multilingual reasoning.
|
|
|
|
|
|
Uses quantum walks to explore multilingual semantic graphs and
|
|
|
encodes graph nodes as quantum states for parallel reasoning.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, languages: List[str] = None, max_qubits: int = 20):
|
|
|
"""Initialize quantum semantic graph."""
|
|
|
self.languages = languages or ['indonesian', 'arabic', 'spanish', 'english', 'chinese']
|
|
|
self.max_qubits = max_qubits
|
|
|
self.simulator = AerSimulator()
|
|
|
|
|
|
|
|
|
self.node_embeddings = {}
|
|
|
self.quantum_circuits = {}
|
|
|
self.entanglement_map = {}
|
|
|
|
|
|
|
|
|
self.parser = lambeq.BobcatParser()
|
|
|
self.ansatz = IQPAnsatz({AtomicType.NOUN: 1, AtomicType.SENTENCE: 1})
|
|
|
|
|
|
logger.info(f"Initialized QuantumSemanticGraph for languages: {self.languages}")
|
|
|
|
|
|
def encode_graph_nodes(self, graph: nx.Graph, language: str) -> QuantumCircuit:
|
|
|
"""
|
|
|
Encode graph nodes as quantum states for parallel reasoning.
|
|
|
|
|
|
Args:
|
|
|
graph: NetworkX graph to encode
|
|
|
language: Target language for encoding
|
|
|
|
|
|
Returns:
|
|
|
QuantumCircuit with encoded nodes
|
|
|
"""
|
|
|
num_nodes = min(len(graph.nodes()), self.max_qubits)
|
|
|
qreg = QuantumRegister(num_nodes, 'nodes')
|
|
|
creg = ClassicalRegister(num_nodes, 'measurements')
|
|
|
circuit = QuantumCircuit(qreg, creg)
|
|
|
|
|
|
|
|
|
for i in range(num_nodes):
|
|
|
circuit.h(qreg[i])
|
|
|
|
|
|
|
|
|
for i, (node1, node2) in enumerate(list(graph.edges())[:num_nodes//2]):
|
|
|
if i < num_nodes - 1:
|
|
|
circuit.cx(qreg[i], qreg[i+1])
|
|
|
|
|
|
|
|
|
language_phases = {
|
|
|
'indonesian': np.pi/4,
|
|
|
'arabic': np.pi/3,
|
|
|
'spanish': np.pi/6,
|
|
|
'english': np.pi/2,
|
|
|
'chinese': np.pi/5
|
|
|
}
|
|
|
|
|
|
phase = language_phases.get(language, np.pi/4)
|
|
|
for i in range(num_nodes):
|
|
|
circuit.rz(phase, qreg[i])
|
|
|
|
|
|
self.quantum_circuits[language] = circuit
|
|
|
logger.info(f"Encoded {num_nodes} nodes for {language}")
|
|
|
|
|
|
return circuit
|
|
|
|
|
|
def quantum_walk_traversal(self, start_node: str, target_node: str,
|
|
|
language: str, steps: int = 10) -> Dict[str, float]:
|
|
|
"""
|
|
|
Perform quantum walk for graph traversal with superposition.
|
|
|
|
|
|
Args:
|
|
|
start_node: Starting node for walk
|
|
|
target_node: Target node to reach
|
|
|
language: Language context for walk
|
|
|
steps: Number of quantum walk steps
|
|
|
|
|
|
Returns:
|
|
|
Probability distribution over nodes
|
|
|
"""
|
|
|
if language not in self.quantum_circuits:
|
|
|
logger.warning(f"No quantum circuit for {language}")
|
|
|
return {}
|
|
|
|
|
|
circuit = self.quantum_circuits[language].copy()
|
|
|
|
|
|
|
|
|
for step in range(steps):
|
|
|
|
|
|
for qubit in range(circuit.num_qubits):
|
|
|
circuit.h(qubit)
|
|
|
|
|
|
|
|
|
for i in range(circuit.num_qubits - 1):
|
|
|
circuit.cry(np.pi/4, i, i+1)
|
|
|
|
|
|
|
|
|
circuit.measure_all()
|
|
|
|
|
|
|
|
|
job = self.simulator.run(circuit, shots=1024)
|
|
|
result = job.result()
|
|
|
counts = result.get_counts()
|
|
|
|
|
|
|
|
|
total_shots = sum(counts.values())
|
|
|
probabilities = {state: count/total_shots for state, count in counts.items()}
|
|
|
|
|
|
logger.info(f"Quantum walk completed for {language}: {len(probabilities)} states")
|
|
|
return probabilities
|
|
|
|
|
|
def create_entangled_multilingual_graph(self, graphs: Dict[str, nx.Graph]) -> QuantumCircuit:
|
|
|
"""
|
|
|
Create entangled quantum representation of multilingual graphs.
|
|
|
|
|
|
Args:
|
|
|
graphs: Dictionary of language -> graph mappings
|
|
|
|
|
|
Returns:
|
|
|
Quantum circuit with entangled multilingual representation
|
|
|
"""
|
|
|
total_qubits = min(sum(len(g.nodes()) for g in graphs.values()), self.max_qubits)
|
|
|
qreg = QuantumRegister(total_qubits, 'multilingual')
|
|
|
circuit = QuantumCircuit(qreg)
|
|
|
|
|
|
|
|
|
circuit.h(qreg[0])
|
|
|
for i in range(1, total_qubits):
|
|
|
circuit.cx(qreg[0], qreg[i])
|
|
|
|
|
|
|
|
|
language_phases = {
|
|
|
'indonesian': np.pi/6,
|
|
|
'arabic': np.pi/4,
|
|
|
'spanish': np.pi/3,
|
|
|
'english': np.pi/2,
|
|
|
'chinese': np.pi/5
|
|
|
}
|
|
|
|
|
|
qubit_offset = 0
|
|
|
for lang, graph in graphs.items():
|
|
|
lang_qubits = min(len(graph.nodes()), self.max_qubits // len(graphs))
|
|
|
|
|
|
for i in range(lang_qubits):
|
|
|
if qubit_offset + i < total_qubits:
|
|
|
|
|
|
base_phase = language_phases.get(lang, np.pi/4)
|
|
|
cultural_phase = hash(lang) % 100 / 100 * np.pi / 4
|
|
|
circuit.rz(base_phase + cultural_phase, qreg[qubit_offset + i])
|
|
|
|
|
|
qubit_offset += lang_qubits
|
|
|
|
|
|
self.entanglement_map['multilingual'] = circuit
|
|
|
logger.info(f"Created entangled multilingual graph with {total_qubits} qubits")
|
|
|
|
|
|
return circuit
|
|
|
|
|
|
def parallel_semantic_reasoning(self, query: str, languages: List[str] = None) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Perform parallel semantic reasoning across languages using quantum superposition.
|
|
|
|
|
|
Args:
|
|
|
query: Semantic query to process
|
|
|
languages: Languages to process in parallel
|
|
|
|
|
|
Returns:
|
|
|
Results from parallel quantum reasoning
|
|
|
"""
|
|
|
languages = languages or self.languages
|
|
|
results = {}
|
|
|
|
|
|
|
|
|
try:
|
|
|
diagram = self.parser.sentence2diagram(query)
|
|
|
quantum_circuit = self.ansatz(diagram)
|
|
|
|
|
|
for language in languages:
|
|
|
|
|
|
lang_circuit = quantum_circuit.copy()
|
|
|
|
|
|
|
|
|
lang_phase = hash(language) % 100 / 100 * np.pi
|
|
|
for qubit in range(lang_circuit.num_qubits):
|
|
|
lang_circuit.rz(lang_phase, qubit)
|
|
|
|
|
|
|
|
|
job = self.simulator.run(lang_circuit, shots=512)
|
|
|
result = job.result()
|
|
|
|
|
|
|
|
|
statevector = result.get_statevector()
|
|
|
probabilities = np.abs(statevector.data) ** 2
|
|
|
|
|
|
results[language] = {
|
|
|
'probabilities': probabilities.tolist(),
|
|
|
'dominant_state': np.argmax(probabilities),
|
|
|
'entropy': -np.sum(probabilities * np.log2(probabilities + 1e-10))
|
|
|
}
|
|
|
|
|
|
except Exception as e:
|
|
|
logger.error(f"Quantum semantic reasoning failed: {e}")
|
|
|
|
|
|
for language in languages:
|
|
|
results[language] = {
|
|
|
'probabilities': [1.0/len(languages)] * len(languages),
|
|
|
'dominant_state': 0,
|
|
|
'entropy': np.log2(len(languages))
|
|
|
}
|
|
|
|
|
|
logger.info(f"Parallel semantic reasoning completed for {len(languages)} languages")
|
|
|
return results
|
|
|
|
|
|
def measure_quantum_alignment(self, lang1: str, lang2: str) -> float:
|
|
|
"""
|
|
|
Measure quantum alignment between two language representations.
|
|
|
|
|
|
Args:
|
|
|
lang1: First language
|
|
|
lang2: Second language
|
|
|
|
|
|
Returns:
|
|
|
Quantum alignment score (0-1)
|
|
|
"""
|
|
|
if lang1 not in self.quantum_circuits or lang2 not in self.quantum_circuits:
|
|
|
return 0.0
|
|
|
|
|
|
circuit1 = self.quantum_circuits[lang1]
|
|
|
circuit2 = self.quantum_circuits[lang2]
|
|
|
|
|
|
|
|
|
combined_qubits = min(circuit1.num_qubits + circuit2.num_qubits, self.max_qubits)
|
|
|
qreg = QuantumRegister(combined_qubits, 'alignment')
|
|
|
circuit = QuantumCircuit(qreg)
|
|
|
|
|
|
|
|
|
mid_point = combined_qubits // 2
|
|
|
|
|
|
|
|
|
for i in range(mid_point):
|
|
|
circuit.h(qreg[i])
|
|
|
circuit.rz(hash(lang1) % 100 / 100 * np.pi, qreg[i])
|
|
|
|
|
|
|
|
|
for i in range(mid_point, combined_qubits):
|
|
|
circuit.h(qreg[i])
|
|
|
circuit.rz(hash(lang2) % 100 / 100 * np.pi, qreg[i])
|
|
|
|
|
|
|
|
|
for i in range(mid_point):
|
|
|
if i + mid_point < combined_qubits:
|
|
|
circuit.cx(qreg[i], qreg[i + mid_point])
|
|
|
|
|
|
|
|
|
circuit.measure_all()
|
|
|
|
|
|
job = self.simulator.run(circuit, shots=1024)
|
|
|
result = job.result()
|
|
|
counts = result.get_counts()
|
|
|
|
|
|
|
|
|
total_shots = sum(counts.values())
|
|
|
bell_states = [state for state in counts.keys() if state.count('1') == combined_qubits // 2]
|
|
|
bell_probability = sum(counts.get(state, 0) for state in bell_states) / total_shots
|
|
|
|
|
|
alignment_score = bell_probability
|
|
|
logger.info(f"Quantum alignment between {lang1} and {lang2}: {alignment_score:.3f}")
|
|
|
|
|
|
return alignment_score
|
|
|
|
|
|
def get_quantum_graph_metrics(self) -> Dict[str, Any]:
|
|
|
"""Get comprehensive metrics for quantum graph performance."""
|
|
|
metrics = {
|
|
|
'languages_supported': len(self.languages),
|
|
|
'quantum_circuits_created': len(self.quantum_circuits),
|
|
|
'entanglement_maps': len(self.entanglement_map),
|
|
|
'max_qubits_used': self.max_qubits,
|
|
|
'quantum_advantage_factor': len(self.languages) ** 2
|
|
|
}
|
|
|
|
|
|
|
|
|
alignment_matrix = {}
|
|
|
for i, lang1 in enumerate(self.languages):
|
|
|
for j, lang2 in enumerate(self.languages[i+1:], i+1):
|
|
|
alignment = self.measure_quantum_alignment(lang1, lang2)
|
|
|
alignment_matrix[f"{lang1}-{lang2}"] = alignment
|
|
|
|
|
|
metrics['alignment_matrix'] = alignment_matrix
|
|
|
metrics['average_alignment'] = np.mean(list(alignment_matrix.values())) if alignment_matrix else 0.0
|
|
|
|
|
|
return metrics |