QuantumLimitGraph-v2 / quantum_provenance_tracker.py
Nurcholish's picture
Upload 13 files
b793755 verified
# -*- coding: utf-8 -*-
"""
Stage 5: Visual Identity & Provenance → Quantum Traceability
Classical provenance is linear. Quantum provenance allows branching,
reversible trace paths using quantum hashing for model lineage and
quantum fingerprints for visual identity.
"""
import numpy as np
from typing import Dict, List, Tuple, Optional, Any, Union
import hashlib
import json
import time
from dataclasses import dataclass, asdict
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.quantum_info import Statevector, random_statevector
from qiskit_aer import AerSimulator
import logging
logger = logging.getLogger(__name__)
@dataclass
class QuantumProvenanceRecord:
"""Data class for quantum provenance records."""
record_id: str
parent_id: Optional[str]
model_hash: str
quantum_fingerprint: str
visual_identity_hash: str
operation_type: str
parameters: Dict[str, Any]
timestamp: float
quantum_state: List[complex]
entanglement_links: List[str]
reversibility_key: str
class QuantumProvenanceTracker:
"""
Quantum-enhanced provenance tracking for AI Research Agent.
Uses quantum hashing for model lineage and encodes visual identity
as quantum fingerprints with entangled logo states for traceability.
"""
def __init__(self, max_qubits: int = 20, hash_precision: int = 256):
"""Initialize quantum provenance tracker."""
self.max_qubits = max_qubits
self.hash_precision = hash_precision
self.simulator = AerSimulator()
# Provenance state
self.provenance_graph = {}
self.quantum_fingerprints = {}
self.visual_identities = {}
self.entanglement_registry = {}
self.reversibility_cache = {}
logger.info(f"Initialized QuantumProvenanceTracker with {max_qubits} qubits, {hash_precision}-bit precision")
def create_quantum_hash(self, data: Union[str, Dict, List], salt: str = None) -> str:
"""
Create quantum-enhanced hash for data integrity.
Args:
data: Data to hash
salt: Optional salt for hashing
Returns:
Quantum hash string
"""
# Convert data to string representation
if isinstance(data, (dict, list)):
data_str = json.dumps(data, sort_keys=True)
else:
data_str = str(data)
if salt:
data_str = f"{data_str}:{salt}"
# Classical hash as base
classical_hash = hashlib.sha256(data_str.encode()).hexdigest()
# Create quantum circuit for hash enhancement
num_qubits = min(len(classical_hash) // 4, self.max_qubits) # 4 hex chars per qubit
qreg = QuantumRegister(num_qubits, 'hash')
circuit = QuantumCircuit(qreg)
# Encode classical hash into quantum state
for i, hex_char in enumerate(classical_hash[:num_qubits * 4:4]):
hex_value = int(hex_char, 16)
# Convert to rotation angle
angle = (hex_value / 15.0) * np.pi
circuit.ry(angle, qreg[i])
# Create quantum entanglement for hash integrity
for i in range(num_qubits - 1):
circuit.cx(qreg[i], qreg[i + 1])
# Add quantum randomness
for i in range(num_qubits):
circuit.rz(np.pi / (i + 1), qreg[i])
# Measure quantum state
circuit.measure_all()
job = self.simulator.run(circuit, shots=1)
result = job.result()
counts = result.get_counts()
quantum_measurement = list(counts.keys())[0]
# Combine classical and quantum hashes
quantum_hash = f"q{classical_hash[:32]}{quantum_measurement}"
logger.debug(f"Created quantum hash: {quantum_hash[:16]}...")
return quantum_hash
def generate_quantum_fingerprint(self, model_params: Dict[str, Any],
visual_elements: Dict[str, Any] = None) -> str:
"""
Generate quantum fingerprint for model and visual identity.
Args:
model_params: Model parameters to fingerprint
visual_elements: Visual identity elements (colors, logos, etc.)
Returns:
Quantum fingerprint string
"""
# Create quantum circuit for fingerprinting
num_qubits = min(self.max_qubits, 16) # Limit for fingerprint
qreg = QuantumRegister(num_qubits, 'fingerprint')
circuit = QuantumCircuit(qreg)
# Initialize superposition
for i in range(num_qubits):
circuit.h(qreg[i])
# Encode model parameters
weights = model_params.get('weights', [1.0])
for i, weight in enumerate(weights[:num_qubits]):
angle = weight * np.pi if abs(weight) <= 1 else np.pi
circuit.ry(angle, qreg[i])
# Encode visual elements if provided
if visual_elements:
colors = visual_elements.get('colors', [])
for i, color in enumerate(colors[:num_qubits]):
if isinstance(color, str):
# Convert color to numeric value
color_value = sum(ord(c) for c in color) % 256
angle = (color_value / 255.0) * np.pi
circuit.rz(angle, qreg[i])
# Create entanglement pattern for uniqueness
for i in range(num_qubits - 1):
circuit.cx(qreg[i], qreg[i + 1])
# Add model-specific phase
model_id = model_params.get('id', 'default')
model_phase = (hash(model_id) % 1000) / 1000 * 2 * np.pi
circuit.rz(model_phase, qreg[0])
# Measure fingerprint
circuit.measure_all()
job = self.simulator.run(circuit, shots=1)
result = job.result()
counts = result.get_counts()
fingerprint_bits = list(counts.keys())[0]
# Convert to hex fingerprint
fingerprint_int = int(fingerprint_bits, 2)
fingerprint_hex = f"qf{fingerprint_int:0{num_qubits//4}x}"
# Store fingerprint
fingerprint_key = self.create_quantum_hash(model_params)
self.quantum_fingerprints[fingerprint_key] = {
'fingerprint': fingerprint_hex,
'model_params': model_params,
'visual_elements': visual_elements,
'creation_time': time.time(),
'quantum_circuit': circuit
}
logger.info(f"Generated quantum fingerprint: {fingerprint_hex}")
return fingerprint_hex
def create_entangled_logo_states(self, logo_variants: List[Dict[str, Any]]) -> QuantumCircuit:
"""
Create entangled quantum states for logo variants.
Args:
logo_variants: List of logo variant specifications
Returns:
Quantum circuit with entangled logo states
"""
num_variants = min(len(logo_variants), self.max_qubits)
qreg = QuantumRegister(num_variants, 'logo_variants')
circuit = QuantumCircuit(qreg)
# Create GHZ state for maximum entanglement
circuit.h(qreg[0])
for i in range(1, num_variants):
circuit.cx(qreg[0], qreg[i])
# Encode variant-specific features
for i, variant in enumerate(logo_variants[:num_variants]):
# Encode color scheme
colors = variant.get('colors', ['#000000'])
color_hash = hash(str(colors)) % 1000
color_phase = (color_hash / 1000) * 2 * np.pi
circuit.rz(color_phase, qreg[i])
# Encode style elements
style = variant.get('style', 'default')
style_angle = (hash(style) % 100) / 100 * np.pi
circuit.ry(style_angle, qreg[i])
# Store entangled logo circuit
logo_key = self.create_quantum_hash(logo_variants)
self.visual_identities[logo_key] = {
'variants': logo_variants,
'entangled_circuit': circuit,
'creation_time': time.time()
}
logger.info(f"Created entangled logo states for {num_variants} variants")
return circuit
def record_provenance(self, operation_type: str, model_params: Dict[str, Any],
parent_record_id: str = None, visual_elements: Dict[str, Any] = None) -> str:
"""
Record quantum provenance for an operation.
Args:
operation_type: Type of operation (train, fine-tune, merge, etc.)
model_params: Current model parameters
parent_record_id: ID of parent record for lineage
visual_elements: Visual identity elements
Returns:
Provenance record ID
"""
# Generate unique record ID
record_id = self.create_quantum_hash({
'operation': operation_type,
'params': model_params,
'timestamp': time.time()
})
# Create quantum fingerprint
fingerprint = self.generate_quantum_fingerprint(model_params, visual_elements)
# Generate model hash
model_hash = self.create_quantum_hash(model_params)
# Create visual identity hash
visual_hash = self.create_quantum_hash(visual_elements) if visual_elements else "none"
# Create quantum state for this record
num_qubits = min(self.max_qubits, 12)
quantum_state = random_statevector(2**num_qubits)
# Generate reversibility key for quantum operations
reversibility_key = self.create_quantum_hash({
'record_id': record_id,
'operation': operation_type,
'timestamp': time.time()
})
# Create provenance record
provenance_record = QuantumProvenanceRecord(
record_id=record_id,
parent_id=parent_record_id,
model_hash=model_hash,
quantum_fingerprint=fingerprint,
visual_identity_hash=visual_hash,
operation_type=operation_type,
parameters=model_params,
timestamp=time.time(),
quantum_state=quantum_state.data.tolist(),
entanglement_links=[],
reversibility_key=reversibility_key
)
# Store in provenance graph
self.provenance_graph[record_id] = provenance_record
# Create entanglement with parent if exists
if parent_record_id and parent_record_id in self.provenance_graph:
self._create_provenance_entanglement(parent_record_id, record_id)
# Store reversibility information
self.reversibility_cache[reversibility_key] = {
'record_id': record_id,
'inverse_operation': self._get_inverse_operation(operation_type),
'restoration_params': model_params.copy()
}
logger.info(f"Recorded quantum provenance: {record_id[:16]}... for {operation_type}")
return record_id
def _create_provenance_entanglement(self, parent_id: str, child_id: str):
"""Create quantum entanglement between provenance records."""
if parent_id not in self.provenance_graph or child_id not in self.provenance_graph:
return
# Update entanglement links
self.provenance_graph[parent_id].entanglement_links.append(child_id)
self.provenance_graph[child_id].entanglement_links.append(parent_id)
# Store in entanglement registry
entanglement_key = f"{parent_id}:{child_id}"
self.entanglement_registry[entanglement_key] = {
'parent': parent_id,
'child': child_id,
'entanglement_strength': np.random.random(), # Quantum correlation strength
'creation_time': time.time()
}
logger.debug(f"Created provenance entanglement: {parent_id[:8]}...:{child_id[:8]}...")
def trace_lineage(self, record_id: str, max_depth: int = 10) -> Dict[str, Any]:
"""
Trace quantum lineage for a provenance record.
Args:
record_id: Starting record ID
max_depth: Maximum trace depth
Returns:
Lineage trace information
"""
if record_id not in self.provenance_graph:
return {}
lineage = {
'root_record': record_id,
'trace_path': [],
'quantum_correlations': [],
'branching_points': [],
'total_depth': 0
}
# Breadth-first search through provenance graph
visited = set()
queue = [(record_id, 0)]
while queue and len(lineage['trace_path']) < max_depth:
current_id, depth = queue.pop(0)
if current_id in visited:
continue
visited.add(current_id)
record = self.provenance_graph[current_id]
# Add to trace path
lineage['trace_path'].append({
'record_id': current_id,
'operation_type': record.operation_type,
'timestamp': record.timestamp,
'depth': depth,
'quantum_fingerprint': record.quantum_fingerprint
})
# Check for branching (multiple children)
children = [link for link in record.entanglement_links
if link in self.provenance_graph and
self.provenance_graph[link].parent_id == current_id]
if len(children) > 1:
lineage['branching_points'].append({
'parent_id': current_id,
'children': children,
'branch_count': len(children)
})
# Add quantum correlations
for link in record.entanglement_links:
if link in self.provenance_graph:
entanglement_key = f"{current_id}:{link}"
if entanglement_key in self.entanglement_registry:
correlation = self.entanglement_registry[entanglement_key]
lineage['quantum_correlations'].append(correlation)
# Add parent to queue
if record.parent_id and record.parent_id not in visited:
queue.append((record.parent_id, depth + 1))
# Add children to queue
for child in children:
if child not in visited:
queue.append((child, depth + 1))
lineage['total_depth'] = max([item['depth'] for item in lineage['trace_path']], default=0)
logger.info(f"Traced lineage for {record_id[:16]}...: {len(lineage['trace_path'])} records")
return lineage
def verify_quantum_integrity(self, record_id: str) -> Dict[str, Any]:
"""
Verify quantum integrity of a provenance record.
Args:
record_id: Record ID to verify
Returns:
Integrity verification results
"""
if record_id not in self.provenance_graph:
return {'valid': False, 'error': 'Record not found'}
record = self.provenance_graph[record_id]
# Verify quantum fingerprint
regenerated_fingerprint = self.generate_quantum_fingerprint(
record.parameters,
self.visual_identities.get(record.visual_identity_hash, {}).get('variants')
)
fingerprint_valid = regenerated_fingerprint == record.quantum_fingerprint
# Verify model hash
regenerated_model_hash = self.create_quantum_hash(record.parameters)
model_hash_valid = regenerated_model_hash == record.model_hash
# Verify quantum state integrity
quantum_state = np.array(record.quantum_state)
state_norm = np.linalg.norm(quantum_state)
state_valid = abs(state_norm - 1.0) < 1e-6 # Valid quantum state should be normalized
# Verify entanglement links
entanglement_valid = all(
link in self.provenance_graph for link in record.entanglement_links
)
integrity_result = {
'record_id': record_id,
'valid': fingerprint_valid and model_hash_valid and state_valid and entanglement_valid,
'fingerprint_valid': fingerprint_valid,
'model_hash_valid': model_hash_valid,
'quantum_state_valid': state_valid,
'entanglement_valid': entanglement_valid,
'state_norm': float(state_norm),
'verification_time': time.time()
}
logger.info(f"Verified quantum integrity for {record_id[:16]}...: {'VALID' if integrity_result['valid'] else 'INVALID'}")
return integrity_result
def reverse_operation(self, reversibility_key: str) -> Dict[str, Any]:
"""
Reverse a quantum operation using reversibility key.
Args:
reversibility_key: Key for operation reversal
Returns:
Reversal operation results
"""
if reversibility_key not in self.reversibility_cache:
return {'success': False, 'error': 'Reversibility key not found'}
reversal_info = self.reversibility_cache[reversibility_key]
record_id = reversal_info['record_id']
if record_id not in self.provenance_graph:
return {'success': False, 'error': 'Original record not found'}
original_record = self.provenance_graph[record_id]
# Create reversed operation record
reversed_params = reversal_info['restoration_params']
inverse_operation = reversal_info['inverse_operation']
# Record the reversal as new provenance entry
reversal_record_id = self.record_provenance(
operation_type=f"reverse_{inverse_operation}",
model_params=reversed_params,
parent_record_id=record_id
)
reversal_result = {
'success': True,
'original_record_id': record_id,
'reversal_record_id': reversal_record_id,
'reversed_operation': inverse_operation,
'restored_parameters': reversed_params,
'reversal_time': time.time()
}
logger.info(f"Reversed operation {original_record.operation_type} -> {inverse_operation}")
return reversal_result
def _get_inverse_operation(self, operation_type: str) -> str:
"""Get inverse operation for reversibility."""
inverse_map = {
'train': 'untrain',
'fine_tune': 'restore_base',
'merge': 'split',
'quantize': 'dequantize',
'prune': 'restore_weights',
'distill': 'expand'
}
return inverse_map.get(operation_type, f"reverse_{operation_type}")
def export_provenance_graph(self, filepath: str):
"""Export complete provenance graph to JSON file."""
export_data = {
'provenance_records': {
record_id: {
'record_id': record.record_id,
'parent_id': record.parent_id,
'model_hash': record.model_hash,
'quantum_fingerprint': record.quantum_fingerprint,
'visual_identity_hash': record.visual_identity_hash,
'operation_type': record.operation_type,
'parameters': record.parameters,
'timestamp': record.timestamp,
'entanglement_links': record.entanglement_links,
'reversibility_key': record.reversibility_key
} for record_id, record in self.provenance_graph.items()
},
'quantum_fingerprints': self.quantum_fingerprints,
'visual_identities': {
key: {
'variants': value['variants'],
'creation_time': value['creation_time']
} for key, value in self.visual_identities.items()
},
'entanglement_registry': self.entanglement_registry,
'export_metadata': {
'total_records': len(self.provenance_graph),
'export_time': time.time(),
'quantum_precision': self.hash_precision
}
}
with open(filepath, 'w') as f:
json.dump(export_data, f, indent=2)
logger.info(f"Exported provenance graph to {filepath}: {len(self.provenance_graph)} records")
def get_quantum_provenance_metrics(self) -> Dict[str, Any]:
"""Get comprehensive metrics for quantum provenance tracking."""
metrics = {
'total_records': len(self.provenance_graph),
'quantum_fingerprints': len(self.quantum_fingerprints),
'visual_identities': len(self.visual_identities),
'entanglement_links': len(self.entanglement_registry),
'reversibility_keys': len(self.reversibility_cache),
'max_qubits': self.max_qubits,
'hash_precision': self.hash_precision
}
if self.provenance_graph:
# Analyze provenance structure
operations = [record.operation_type for record in self.provenance_graph.values()]
operation_counts = {op: operations.count(op) for op in set(operations)}
# Calculate graph depth
depths = []
for record_id in self.provenance_graph:
lineage = self.trace_lineage(record_id, max_depth=50)
depths.append(lineage['total_depth'])
metrics.update({
'operation_distribution': operation_counts,
'average_lineage_depth': np.mean(depths) if depths else 0,
'max_lineage_depth': max(depths) if depths else 0,
'branching_factor': len(self.entanglement_registry) / len(self.provenance_graph)
})
return metrics