|
|
|
|
|
"""
|
|
|
Stage 5: Visual Identity & Provenance → Quantum Traceability
|
|
|
|
|
|
Classical provenance is linear. Quantum provenance allows branching,
|
|
|
reversible trace paths using quantum hashing for model lineage and
|
|
|
quantum fingerprints for visual identity.
|
|
|
"""
|
|
|
|
|
|
import numpy as np
|
|
|
from typing import Dict, List, Tuple, Optional, Any, Union
|
|
|
import hashlib
|
|
|
import json
|
|
|
import time
|
|
|
from dataclasses import dataclass, asdict
|
|
|
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
|
|
|
from qiskit.quantum_info import Statevector, random_statevector
|
|
|
from qiskit_aer import AerSimulator
|
|
|
import logging
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
|
class QuantumProvenanceRecord:
|
|
|
"""Data class for quantum provenance records."""
|
|
|
record_id: str
|
|
|
parent_id: Optional[str]
|
|
|
model_hash: str
|
|
|
quantum_fingerprint: str
|
|
|
visual_identity_hash: str
|
|
|
operation_type: str
|
|
|
parameters: Dict[str, Any]
|
|
|
timestamp: float
|
|
|
quantum_state: List[complex]
|
|
|
entanglement_links: List[str]
|
|
|
reversibility_key: str
|
|
|
|
|
|
class QuantumProvenanceTracker:
|
|
|
"""
|
|
|
Quantum-enhanced provenance tracking for AI Research Agent.
|
|
|
|
|
|
Uses quantum hashing for model lineage and encodes visual identity
|
|
|
as quantum fingerprints with entangled logo states for traceability.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, max_qubits: int = 20, hash_precision: int = 256):
|
|
|
"""Initialize quantum provenance tracker."""
|
|
|
self.max_qubits = max_qubits
|
|
|
self.hash_precision = hash_precision
|
|
|
self.simulator = AerSimulator()
|
|
|
|
|
|
|
|
|
self.provenance_graph = {}
|
|
|
self.quantum_fingerprints = {}
|
|
|
self.visual_identities = {}
|
|
|
self.entanglement_registry = {}
|
|
|
self.reversibility_cache = {}
|
|
|
|
|
|
logger.info(f"Initialized QuantumProvenanceTracker with {max_qubits} qubits, {hash_precision}-bit precision")
|
|
|
|
|
|
def create_quantum_hash(self, data: Union[str, Dict, List], salt: str = None) -> str:
|
|
|
"""
|
|
|
Create quantum-enhanced hash for data integrity.
|
|
|
|
|
|
Args:
|
|
|
data: Data to hash
|
|
|
salt: Optional salt for hashing
|
|
|
|
|
|
Returns:
|
|
|
Quantum hash string
|
|
|
"""
|
|
|
|
|
|
if isinstance(data, (dict, list)):
|
|
|
data_str = json.dumps(data, sort_keys=True)
|
|
|
else:
|
|
|
data_str = str(data)
|
|
|
|
|
|
if salt:
|
|
|
data_str = f"{data_str}:{salt}"
|
|
|
|
|
|
|
|
|
classical_hash = hashlib.sha256(data_str.encode()).hexdigest()
|
|
|
|
|
|
|
|
|
num_qubits = min(len(classical_hash) // 4, self.max_qubits)
|
|
|
qreg = QuantumRegister(num_qubits, 'hash')
|
|
|
circuit = QuantumCircuit(qreg)
|
|
|
|
|
|
|
|
|
for i, hex_char in enumerate(classical_hash[:num_qubits * 4:4]):
|
|
|
hex_value = int(hex_char, 16)
|
|
|
|
|
|
angle = (hex_value / 15.0) * np.pi
|
|
|
circuit.ry(angle, qreg[i])
|
|
|
|
|
|
|
|
|
for i in range(num_qubits - 1):
|
|
|
circuit.cx(qreg[i], qreg[i + 1])
|
|
|
|
|
|
|
|
|
for i in range(num_qubits):
|
|
|
circuit.rz(np.pi / (i + 1), qreg[i])
|
|
|
|
|
|
|
|
|
circuit.measure_all()
|
|
|
|
|
|
job = self.simulator.run(circuit, shots=1)
|
|
|
result = job.result()
|
|
|
counts = result.get_counts()
|
|
|
quantum_measurement = list(counts.keys())[0]
|
|
|
|
|
|
|
|
|
quantum_hash = f"q{classical_hash[:32]}{quantum_measurement}"
|
|
|
|
|
|
logger.debug(f"Created quantum hash: {quantum_hash[:16]}...")
|
|
|
return quantum_hash
|
|
|
|
|
|
def generate_quantum_fingerprint(self, model_params: Dict[str, Any],
|
|
|
visual_elements: Dict[str, Any] = None) -> str:
|
|
|
"""
|
|
|
Generate quantum fingerprint for model and visual identity.
|
|
|
|
|
|
Args:
|
|
|
model_params: Model parameters to fingerprint
|
|
|
visual_elements: Visual identity elements (colors, logos, etc.)
|
|
|
|
|
|
Returns:
|
|
|
Quantum fingerprint string
|
|
|
"""
|
|
|
|
|
|
num_qubits = min(self.max_qubits, 16)
|
|
|
qreg = QuantumRegister(num_qubits, 'fingerprint')
|
|
|
circuit = QuantumCircuit(qreg)
|
|
|
|
|
|
|
|
|
for i in range(num_qubits):
|
|
|
circuit.h(qreg[i])
|
|
|
|
|
|
|
|
|
weights = model_params.get('weights', [1.0])
|
|
|
for i, weight in enumerate(weights[:num_qubits]):
|
|
|
angle = weight * np.pi if abs(weight) <= 1 else np.pi
|
|
|
circuit.ry(angle, qreg[i])
|
|
|
|
|
|
|
|
|
if visual_elements:
|
|
|
colors = visual_elements.get('colors', [])
|
|
|
for i, color in enumerate(colors[:num_qubits]):
|
|
|
if isinstance(color, str):
|
|
|
|
|
|
color_value = sum(ord(c) for c in color) % 256
|
|
|
angle = (color_value / 255.0) * np.pi
|
|
|
circuit.rz(angle, qreg[i])
|
|
|
|
|
|
|
|
|
for i in range(num_qubits - 1):
|
|
|
circuit.cx(qreg[i], qreg[i + 1])
|
|
|
|
|
|
|
|
|
model_id = model_params.get('id', 'default')
|
|
|
model_phase = (hash(model_id) % 1000) / 1000 * 2 * np.pi
|
|
|
circuit.rz(model_phase, qreg[0])
|
|
|
|
|
|
|
|
|
circuit.measure_all()
|
|
|
|
|
|
job = self.simulator.run(circuit, shots=1)
|
|
|
result = job.result()
|
|
|
counts = result.get_counts()
|
|
|
fingerprint_bits = list(counts.keys())[0]
|
|
|
|
|
|
|
|
|
fingerprint_int = int(fingerprint_bits, 2)
|
|
|
fingerprint_hex = f"qf{fingerprint_int:0{num_qubits//4}x}"
|
|
|
|
|
|
|
|
|
fingerprint_key = self.create_quantum_hash(model_params)
|
|
|
self.quantum_fingerprints[fingerprint_key] = {
|
|
|
'fingerprint': fingerprint_hex,
|
|
|
'model_params': model_params,
|
|
|
'visual_elements': visual_elements,
|
|
|
'creation_time': time.time(),
|
|
|
'quantum_circuit': circuit
|
|
|
}
|
|
|
|
|
|
logger.info(f"Generated quantum fingerprint: {fingerprint_hex}")
|
|
|
return fingerprint_hex
|
|
|
|
|
|
def create_entangled_logo_states(self, logo_variants: List[Dict[str, Any]]) -> QuantumCircuit:
|
|
|
"""
|
|
|
Create entangled quantum states for logo variants.
|
|
|
|
|
|
Args:
|
|
|
logo_variants: List of logo variant specifications
|
|
|
|
|
|
Returns:
|
|
|
Quantum circuit with entangled logo states
|
|
|
"""
|
|
|
num_variants = min(len(logo_variants), self.max_qubits)
|
|
|
qreg = QuantumRegister(num_variants, 'logo_variants')
|
|
|
circuit = QuantumCircuit(qreg)
|
|
|
|
|
|
|
|
|
circuit.h(qreg[0])
|
|
|
for i in range(1, num_variants):
|
|
|
circuit.cx(qreg[0], qreg[i])
|
|
|
|
|
|
|
|
|
for i, variant in enumerate(logo_variants[:num_variants]):
|
|
|
|
|
|
colors = variant.get('colors', ['#000000'])
|
|
|
color_hash = hash(str(colors)) % 1000
|
|
|
color_phase = (color_hash / 1000) * 2 * np.pi
|
|
|
circuit.rz(color_phase, qreg[i])
|
|
|
|
|
|
|
|
|
style = variant.get('style', 'default')
|
|
|
style_angle = (hash(style) % 100) / 100 * np.pi
|
|
|
circuit.ry(style_angle, qreg[i])
|
|
|
|
|
|
|
|
|
logo_key = self.create_quantum_hash(logo_variants)
|
|
|
self.visual_identities[logo_key] = {
|
|
|
'variants': logo_variants,
|
|
|
'entangled_circuit': circuit,
|
|
|
'creation_time': time.time()
|
|
|
}
|
|
|
|
|
|
logger.info(f"Created entangled logo states for {num_variants} variants")
|
|
|
return circuit
|
|
|
|
|
|
def record_provenance(self, operation_type: str, model_params: Dict[str, Any],
|
|
|
parent_record_id: str = None, visual_elements: Dict[str, Any] = None) -> str:
|
|
|
"""
|
|
|
Record quantum provenance for an operation.
|
|
|
|
|
|
Args:
|
|
|
operation_type: Type of operation (train, fine-tune, merge, etc.)
|
|
|
model_params: Current model parameters
|
|
|
parent_record_id: ID of parent record for lineage
|
|
|
visual_elements: Visual identity elements
|
|
|
|
|
|
Returns:
|
|
|
Provenance record ID
|
|
|
"""
|
|
|
|
|
|
record_id = self.create_quantum_hash({
|
|
|
'operation': operation_type,
|
|
|
'params': model_params,
|
|
|
'timestamp': time.time()
|
|
|
})
|
|
|
|
|
|
|
|
|
fingerprint = self.generate_quantum_fingerprint(model_params, visual_elements)
|
|
|
|
|
|
|
|
|
model_hash = self.create_quantum_hash(model_params)
|
|
|
|
|
|
|
|
|
visual_hash = self.create_quantum_hash(visual_elements) if visual_elements else "none"
|
|
|
|
|
|
|
|
|
num_qubits = min(self.max_qubits, 12)
|
|
|
quantum_state = random_statevector(2**num_qubits)
|
|
|
|
|
|
|
|
|
reversibility_key = self.create_quantum_hash({
|
|
|
'record_id': record_id,
|
|
|
'operation': operation_type,
|
|
|
'timestamp': time.time()
|
|
|
})
|
|
|
|
|
|
|
|
|
provenance_record = QuantumProvenanceRecord(
|
|
|
record_id=record_id,
|
|
|
parent_id=parent_record_id,
|
|
|
model_hash=model_hash,
|
|
|
quantum_fingerprint=fingerprint,
|
|
|
visual_identity_hash=visual_hash,
|
|
|
operation_type=operation_type,
|
|
|
parameters=model_params,
|
|
|
timestamp=time.time(),
|
|
|
quantum_state=quantum_state.data.tolist(),
|
|
|
entanglement_links=[],
|
|
|
reversibility_key=reversibility_key
|
|
|
)
|
|
|
|
|
|
|
|
|
self.provenance_graph[record_id] = provenance_record
|
|
|
|
|
|
|
|
|
if parent_record_id and parent_record_id in self.provenance_graph:
|
|
|
self._create_provenance_entanglement(parent_record_id, record_id)
|
|
|
|
|
|
|
|
|
self.reversibility_cache[reversibility_key] = {
|
|
|
'record_id': record_id,
|
|
|
'inverse_operation': self._get_inverse_operation(operation_type),
|
|
|
'restoration_params': model_params.copy()
|
|
|
}
|
|
|
|
|
|
logger.info(f"Recorded quantum provenance: {record_id[:16]}... for {operation_type}")
|
|
|
return record_id
|
|
|
|
|
|
def _create_provenance_entanglement(self, parent_id: str, child_id: str):
|
|
|
"""Create quantum entanglement between provenance records."""
|
|
|
if parent_id not in self.provenance_graph or child_id not in self.provenance_graph:
|
|
|
return
|
|
|
|
|
|
|
|
|
self.provenance_graph[parent_id].entanglement_links.append(child_id)
|
|
|
self.provenance_graph[child_id].entanglement_links.append(parent_id)
|
|
|
|
|
|
|
|
|
entanglement_key = f"{parent_id}:{child_id}"
|
|
|
self.entanglement_registry[entanglement_key] = {
|
|
|
'parent': parent_id,
|
|
|
'child': child_id,
|
|
|
'entanglement_strength': np.random.random(),
|
|
|
'creation_time': time.time()
|
|
|
}
|
|
|
|
|
|
logger.debug(f"Created provenance entanglement: {parent_id[:8]}...:{child_id[:8]}...")
|
|
|
|
|
|
def trace_lineage(self, record_id: str, max_depth: int = 10) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Trace quantum lineage for a provenance record.
|
|
|
|
|
|
Args:
|
|
|
record_id: Starting record ID
|
|
|
max_depth: Maximum trace depth
|
|
|
|
|
|
Returns:
|
|
|
Lineage trace information
|
|
|
"""
|
|
|
if record_id not in self.provenance_graph:
|
|
|
return {}
|
|
|
|
|
|
lineage = {
|
|
|
'root_record': record_id,
|
|
|
'trace_path': [],
|
|
|
'quantum_correlations': [],
|
|
|
'branching_points': [],
|
|
|
'total_depth': 0
|
|
|
}
|
|
|
|
|
|
|
|
|
visited = set()
|
|
|
queue = [(record_id, 0)]
|
|
|
|
|
|
while queue and len(lineage['trace_path']) < max_depth:
|
|
|
current_id, depth = queue.pop(0)
|
|
|
|
|
|
if current_id in visited:
|
|
|
continue
|
|
|
|
|
|
visited.add(current_id)
|
|
|
record = self.provenance_graph[current_id]
|
|
|
|
|
|
|
|
|
lineage['trace_path'].append({
|
|
|
'record_id': current_id,
|
|
|
'operation_type': record.operation_type,
|
|
|
'timestamp': record.timestamp,
|
|
|
'depth': depth,
|
|
|
'quantum_fingerprint': record.quantum_fingerprint
|
|
|
})
|
|
|
|
|
|
|
|
|
children = [link for link in record.entanglement_links
|
|
|
if link in self.provenance_graph and
|
|
|
self.provenance_graph[link].parent_id == current_id]
|
|
|
|
|
|
if len(children) > 1:
|
|
|
lineage['branching_points'].append({
|
|
|
'parent_id': current_id,
|
|
|
'children': children,
|
|
|
'branch_count': len(children)
|
|
|
})
|
|
|
|
|
|
|
|
|
for link in record.entanglement_links:
|
|
|
if link in self.provenance_graph:
|
|
|
entanglement_key = f"{current_id}:{link}"
|
|
|
if entanglement_key in self.entanglement_registry:
|
|
|
correlation = self.entanglement_registry[entanglement_key]
|
|
|
lineage['quantum_correlations'].append(correlation)
|
|
|
|
|
|
|
|
|
if record.parent_id and record.parent_id not in visited:
|
|
|
queue.append((record.parent_id, depth + 1))
|
|
|
|
|
|
|
|
|
for child in children:
|
|
|
if child not in visited:
|
|
|
queue.append((child, depth + 1))
|
|
|
|
|
|
lineage['total_depth'] = max([item['depth'] for item in lineage['trace_path']], default=0)
|
|
|
|
|
|
logger.info(f"Traced lineage for {record_id[:16]}...: {len(lineage['trace_path'])} records")
|
|
|
return lineage
|
|
|
|
|
|
def verify_quantum_integrity(self, record_id: str) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Verify quantum integrity of a provenance record.
|
|
|
|
|
|
Args:
|
|
|
record_id: Record ID to verify
|
|
|
|
|
|
Returns:
|
|
|
Integrity verification results
|
|
|
"""
|
|
|
if record_id not in self.provenance_graph:
|
|
|
return {'valid': False, 'error': 'Record not found'}
|
|
|
|
|
|
record = self.provenance_graph[record_id]
|
|
|
|
|
|
|
|
|
regenerated_fingerprint = self.generate_quantum_fingerprint(
|
|
|
record.parameters,
|
|
|
self.visual_identities.get(record.visual_identity_hash, {}).get('variants')
|
|
|
)
|
|
|
|
|
|
fingerprint_valid = regenerated_fingerprint == record.quantum_fingerprint
|
|
|
|
|
|
|
|
|
regenerated_model_hash = self.create_quantum_hash(record.parameters)
|
|
|
model_hash_valid = regenerated_model_hash == record.model_hash
|
|
|
|
|
|
|
|
|
quantum_state = np.array(record.quantum_state)
|
|
|
state_norm = np.linalg.norm(quantum_state)
|
|
|
state_valid = abs(state_norm - 1.0) < 1e-6
|
|
|
|
|
|
|
|
|
entanglement_valid = all(
|
|
|
link in self.provenance_graph for link in record.entanglement_links
|
|
|
)
|
|
|
|
|
|
integrity_result = {
|
|
|
'record_id': record_id,
|
|
|
'valid': fingerprint_valid and model_hash_valid and state_valid and entanglement_valid,
|
|
|
'fingerprint_valid': fingerprint_valid,
|
|
|
'model_hash_valid': model_hash_valid,
|
|
|
'quantum_state_valid': state_valid,
|
|
|
'entanglement_valid': entanglement_valid,
|
|
|
'state_norm': float(state_norm),
|
|
|
'verification_time': time.time()
|
|
|
}
|
|
|
|
|
|
logger.info(f"Verified quantum integrity for {record_id[:16]}...: {'VALID' if integrity_result['valid'] else 'INVALID'}")
|
|
|
return integrity_result
|
|
|
|
|
|
def reverse_operation(self, reversibility_key: str) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Reverse a quantum operation using reversibility key.
|
|
|
|
|
|
Args:
|
|
|
reversibility_key: Key for operation reversal
|
|
|
|
|
|
Returns:
|
|
|
Reversal operation results
|
|
|
"""
|
|
|
if reversibility_key not in self.reversibility_cache:
|
|
|
return {'success': False, 'error': 'Reversibility key not found'}
|
|
|
|
|
|
reversal_info = self.reversibility_cache[reversibility_key]
|
|
|
record_id = reversal_info['record_id']
|
|
|
|
|
|
if record_id not in self.provenance_graph:
|
|
|
return {'success': False, 'error': 'Original record not found'}
|
|
|
|
|
|
original_record = self.provenance_graph[record_id]
|
|
|
|
|
|
|
|
|
reversed_params = reversal_info['restoration_params']
|
|
|
inverse_operation = reversal_info['inverse_operation']
|
|
|
|
|
|
|
|
|
reversal_record_id = self.record_provenance(
|
|
|
operation_type=f"reverse_{inverse_operation}",
|
|
|
model_params=reversed_params,
|
|
|
parent_record_id=record_id
|
|
|
)
|
|
|
|
|
|
reversal_result = {
|
|
|
'success': True,
|
|
|
'original_record_id': record_id,
|
|
|
'reversal_record_id': reversal_record_id,
|
|
|
'reversed_operation': inverse_operation,
|
|
|
'restored_parameters': reversed_params,
|
|
|
'reversal_time': time.time()
|
|
|
}
|
|
|
|
|
|
logger.info(f"Reversed operation {original_record.operation_type} -> {inverse_operation}")
|
|
|
return reversal_result
|
|
|
|
|
|
def _get_inverse_operation(self, operation_type: str) -> str:
|
|
|
"""Get inverse operation for reversibility."""
|
|
|
inverse_map = {
|
|
|
'train': 'untrain',
|
|
|
'fine_tune': 'restore_base',
|
|
|
'merge': 'split',
|
|
|
'quantize': 'dequantize',
|
|
|
'prune': 'restore_weights',
|
|
|
'distill': 'expand'
|
|
|
}
|
|
|
return inverse_map.get(operation_type, f"reverse_{operation_type}")
|
|
|
|
|
|
def export_provenance_graph(self, filepath: str):
|
|
|
"""Export complete provenance graph to JSON file."""
|
|
|
export_data = {
|
|
|
'provenance_records': {
|
|
|
record_id: {
|
|
|
'record_id': record.record_id,
|
|
|
'parent_id': record.parent_id,
|
|
|
'model_hash': record.model_hash,
|
|
|
'quantum_fingerprint': record.quantum_fingerprint,
|
|
|
'visual_identity_hash': record.visual_identity_hash,
|
|
|
'operation_type': record.operation_type,
|
|
|
'parameters': record.parameters,
|
|
|
'timestamp': record.timestamp,
|
|
|
'entanglement_links': record.entanglement_links,
|
|
|
'reversibility_key': record.reversibility_key
|
|
|
} for record_id, record in self.provenance_graph.items()
|
|
|
},
|
|
|
'quantum_fingerprints': self.quantum_fingerprints,
|
|
|
'visual_identities': {
|
|
|
key: {
|
|
|
'variants': value['variants'],
|
|
|
'creation_time': value['creation_time']
|
|
|
} for key, value in self.visual_identities.items()
|
|
|
},
|
|
|
'entanglement_registry': self.entanglement_registry,
|
|
|
'export_metadata': {
|
|
|
'total_records': len(self.provenance_graph),
|
|
|
'export_time': time.time(),
|
|
|
'quantum_precision': self.hash_precision
|
|
|
}
|
|
|
}
|
|
|
|
|
|
with open(filepath, 'w') as f:
|
|
|
json.dump(export_data, f, indent=2)
|
|
|
|
|
|
logger.info(f"Exported provenance graph to {filepath}: {len(self.provenance_graph)} records")
|
|
|
|
|
|
def get_quantum_provenance_metrics(self) -> Dict[str, Any]:
|
|
|
"""Get comprehensive metrics for quantum provenance tracking."""
|
|
|
metrics = {
|
|
|
'total_records': len(self.provenance_graph),
|
|
|
'quantum_fingerprints': len(self.quantum_fingerprints),
|
|
|
'visual_identities': len(self.visual_identities),
|
|
|
'entanglement_links': len(self.entanglement_registry),
|
|
|
'reversibility_keys': len(self.reversibility_cache),
|
|
|
'max_qubits': self.max_qubits,
|
|
|
'hash_precision': self.hash_precision
|
|
|
}
|
|
|
|
|
|
if self.provenance_graph:
|
|
|
|
|
|
operations = [record.operation_type for record in self.provenance_graph.values()]
|
|
|
operation_counts = {op: operations.count(op) for op in set(operations)}
|
|
|
|
|
|
|
|
|
depths = []
|
|
|
for record_id in self.provenance_graph:
|
|
|
lineage = self.trace_lineage(record_id, max_depth=50)
|
|
|
depths.append(lineage['total_depth'])
|
|
|
|
|
|
metrics.update({
|
|
|
'operation_distribution': operation_counts,
|
|
|
'average_lineage_depth': np.mean(depths) if depths else 0,
|
|
|
'max_lineage_depth': max(depths) if depths else 0,
|
|
|
'branching_factor': len(self.entanglement_registry) / len(self.provenance_graph)
|
|
|
})
|
|
|
|
|
|
return metrics |