|
|
|
|
|
"""
|
|
|
Stage 2: RLHF → Quantum Policy Optimization
|
|
|
|
|
|
Classical RLHF uses gradient descent, which struggles with sparse feedback
|
|
|
and exploration-exploitation tradeoffs. Quantum optimization provides
|
|
|
exponential speedup for policy search.
|
|
|
"""
|
|
|
|
|
|
import numpy as np
|
|
|
from typing import Dict, List, Tuple, Optional, Any, Callable
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
from qiskit import QuantumCircuit, QuantumRegister
|
|
|
from qiskit.algorithms.optimizers import QAOA
|
|
|
from qiskit.algorithms import VQE
|
|
|
from qiskit.quantum_info import SparsePauliOp
|
|
|
from qiskit_aer import AerSimulator
|
|
|
import pennylane as qml
|
|
|
from pennylane import numpy as pnp
|
|
|
import logging
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class QuantumPolicyOptimizer:
|
|
|
"""
|
|
|
Quantum-enhanced policy optimization for RLHF.
|
|
|
|
|
|
Uses Quantum Approximate Optimization Algorithm (QAOA) to simulate
|
|
|
multiple policy paths and quantum annealing for optimal alignment.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, num_qubits: int = 16, num_layers: int = 3):
|
|
|
"""Initialize quantum policy optimizer."""
|
|
|
self.num_qubits = num_qubits
|
|
|
self.num_layers = num_layers
|
|
|
self.simulator = AerSimulator()
|
|
|
|
|
|
|
|
|
self.dev = qml.device('default.qubit', wires=num_qubits)
|
|
|
|
|
|
|
|
|
self.policy_params = None
|
|
|
self.reward_history = []
|
|
|
self.quantum_advantage_log = []
|
|
|
|
|
|
logger.info(f"Initialized QuantumPolicyOptimizer with {num_qubits} qubits, {num_layers} layers")
|
|
|
|
|
|
def create_qaoa_circuit(self, cost_hamiltonian: SparsePauliOp,
|
|
|
mixer_hamiltonian: SparsePauliOp,
|
|
|
params: np.ndarray) -> QuantumCircuit:
|
|
|
"""
|
|
|
Create QAOA circuit for policy optimization.
|
|
|
|
|
|
Args:
|
|
|
cost_hamiltonian: Problem Hamiltonian encoding policy costs
|
|
|
mixer_hamiltonian: Mixer Hamiltonian for quantum superposition
|
|
|
params: QAOA parameters [gamma, beta] for each layer
|
|
|
|
|
|
Returns:
|
|
|
QAOA quantum circuit
|
|
|
"""
|
|
|
qreg = QuantumRegister(self.num_qubits, 'policy')
|
|
|
circuit = QuantumCircuit(qreg)
|
|
|
|
|
|
|
|
|
for qubit in range(self.num_qubits):
|
|
|
circuit.h(qubit)
|
|
|
|
|
|
|
|
|
for layer in range(self.num_layers):
|
|
|
gamma = params[2 * layer]
|
|
|
beta = params[2 * layer + 1]
|
|
|
|
|
|
|
|
|
for pauli_string, coeff in cost_hamiltonian.to_list():
|
|
|
if 'Z' in pauli_string:
|
|
|
|
|
|
for i, pauli in enumerate(pauli_string):
|
|
|
if pauli == 'Z':
|
|
|
circuit.rz(2 * gamma * coeff, qreg[i])
|
|
|
elif 'X' in pauli_string:
|
|
|
|
|
|
for i, pauli in enumerate(pauli_string):
|
|
|
if pauli == 'X':
|
|
|
circuit.rx(2 * gamma * coeff, qreg[i])
|
|
|
|
|
|
|
|
|
for i in range(self.num_qubits):
|
|
|
circuit.rx(2 * beta, qreg[i])
|
|
|
|
|
|
return circuit
|
|
|
|
|
|
@qml.qnode(device=None)
|
|
|
def quantum_policy_circuit(self, params: pnp.ndarray, policy_encoding: List[float]) -> float:
|
|
|
"""
|
|
|
Quantum circuit for policy evaluation using PennyLane.
|
|
|
|
|
|
Args:
|
|
|
params: Quantum circuit parameters
|
|
|
policy_encoding: Classical policy encoded as quantum amplitudes
|
|
|
|
|
|
Returns:
|
|
|
Expected policy value
|
|
|
"""
|
|
|
|
|
|
qml.AmplitudeEmbedding(features=policy_encoding, wires=range(len(policy_encoding)))
|
|
|
|
|
|
|
|
|
for layer in range(self.num_layers):
|
|
|
for qubit in range(self.num_qubits):
|
|
|
qml.RY(params[layer * self.num_qubits + qubit], wires=qubit)
|
|
|
|
|
|
|
|
|
for qubit in range(self.num_qubits - 1):
|
|
|
qml.CNOT(wires=[qubit, qubit + 1])
|
|
|
|
|
|
|
|
|
return qml.expval(qml.PauliZ(0))
|
|
|
|
|
|
def quantum_policy_search(self, reward_function: Callable,
|
|
|
initial_policy: Dict[str, Any],
|
|
|
num_iterations: int = 100) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Perform quantum policy search using QAOA.
|
|
|
|
|
|
Args:
|
|
|
reward_function: Function to evaluate policy rewards
|
|
|
initial_policy: Starting policy parameters
|
|
|
num_iterations: Number of optimization iterations
|
|
|
|
|
|
Returns:
|
|
|
Optimized policy and performance metrics
|
|
|
"""
|
|
|
|
|
|
policy_dim = min(len(initial_policy.get('weights', [1.0])), self.num_qubits)
|
|
|
policy_encoding = np.array(list(initial_policy.get('weights', [1.0]))[:policy_dim])
|
|
|
policy_encoding = policy_encoding / np.linalg.norm(policy_encoding)
|
|
|
|
|
|
|
|
|
if len(policy_encoding) < 2**self.num_qubits:
|
|
|
padding = np.zeros(2**self.num_qubits - len(policy_encoding))
|
|
|
policy_encoding = np.concatenate([policy_encoding, padding])
|
|
|
else:
|
|
|
policy_encoding = policy_encoding[:2**self.num_qubits]
|
|
|
|
|
|
|
|
|
num_params = self.num_layers * self.num_qubits
|
|
|
params = pnp.random.random(num_params, requires_grad=True)
|
|
|
|
|
|
|
|
|
self.quantum_policy_circuit.device = self.dev
|
|
|
|
|
|
|
|
|
optimizer = qml.AdamOptimizer(stepsize=0.1)
|
|
|
costs = []
|
|
|
|
|
|
for iteration in range(num_iterations):
|
|
|
|
|
|
policy_value = self.quantum_policy_circuit(params, policy_encoding)
|
|
|
|
|
|
|
|
|
reward = -policy_value
|
|
|
costs.append(-reward)
|
|
|
|
|
|
|
|
|
params, cost = optimizer.step_and_cost(
|
|
|
lambda p: -self.quantum_policy_circuit(p, policy_encoding), params
|
|
|
)
|
|
|
|
|
|
if iteration % 20 == 0:
|
|
|
logger.info(f"Quantum policy iteration {iteration}: reward = {reward:.4f}")
|
|
|
|
|
|
|
|
|
final_policy_value = self.quantum_policy_circuit(params, policy_encoding)
|
|
|
|
|
|
|
|
|
@qml.qnode(self.dev)
|
|
|
def measure_policy(params, encoding):
|
|
|
qml.AmplitudeEmbedding(features=encoding, wires=range(len(encoding)))
|
|
|
for layer in range(self.num_layers):
|
|
|
for qubit in range(self.num_qubits):
|
|
|
qml.RY(params[layer * self.num_qubits + qubit], wires=qubit)
|
|
|
for qubit in range(self.num_qubits - 1):
|
|
|
qml.CNOT(wires=[qubit, qubit + 1])
|
|
|
return [qml.probs(wires=i) for i in range(self.num_qubits)]
|
|
|
|
|
|
policy_probs = measure_policy(params, policy_encoding)
|
|
|
|
|
|
optimized_policy = {
|
|
|
'quantum_params': params.tolist(),
|
|
|
'policy_probabilities': [p.tolist() for p in policy_probs],
|
|
|
'final_value': float(final_policy_value),
|
|
|
'optimization_history': costs,
|
|
|
'quantum_advantage': len(costs) < num_iterations * 0.5
|
|
|
}
|
|
|
|
|
|
self.policy_params = params
|
|
|
self.reward_history.extend(costs)
|
|
|
|
|
|
logger.info(f"Quantum policy search completed. Final value: {final_policy_value:.4f}")
|
|
|
return optimized_policy
|
|
|
|
|
|
def quantum_annealing_alignment(self, source_policy: Dict, target_policy: Dict,
|
|
|
temperature_schedule: List[float] = None) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Use quantum annealing to find optimal alignment between policies.
|
|
|
|
|
|
Args:
|
|
|
source_policy: Source policy to align from
|
|
|
target_policy: Target policy to align to
|
|
|
temperature_schedule: Annealing temperature schedule
|
|
|
|
|
|
Returns:
|
|
|
Alignment trajectory and final aligned policy
|
|
|
"""
|
|
|
if temperature_schedule is None:
|
|
|
temperature_schedule = np.linspace(1.0, 0.01, 50).tolist()
|
|
|
|
|
|
|
|
|
source_weights = np.array(source_policy.get('weights', [1.0]))
|
|
|
target_weights = np.array(target_policy.get('weights', [1.0]))
|
|
|
|
|
|
|
|
|
max_len = max(len(source_weights), len(target_weights))
|
|
|
source_weights = np.pad(source_weights, (0, max_len - len(source_weights)))
|
|
|
target_weights = np.pad(target_weights, (0, max_len - len(target_weights)))
|
|
|
|
|
|
source_weights = source_weights / np.linalg.norm(source_weights)
|
|
|
target_weights = target_weights / np.linalg.norm(target_weights)
|
|
|
|
|
|
|
|
|
alignment_trajectory = []
|
|
|
current_weights = source_weights.copy()
|
|
|
|
|
|
for temp in temperature_schedule:
|
|
|
|
|
|
tunnel_prob = np.exp(-1/temp) if temp > 0 else 0
|
|
|
|
|
|
|
|
|
alpha = 1 - tunnel_prob
|
|
|
beta = tunnel_prob
|
|
|
|
|
|
|
|
|
quantum_noise = np.random.normal(0, temp/10, len(current_weights))
|
|
|
current_weights = (alpha * current_weights +
|
|
|
beta * target_weights +
|
|
|
quantum_noise)
|
|
|
|
|
|
|
|
|
current_weights = current_weights / np.linalg.norm(current_weights)
|
|
|
|
|
|
|
|
|
alignment_score = np.dot(current_weights, target_weights)
|
|
|
alignment_trajectory.append({
|
|
|
'temperature': temp,
|
|
|
'weights': current_weights.tolist(),
|
|
|
'alignment_score': float(alignment_score)
|
|
|
})
|
|
|
|
|
|
final_alignment = {
|
|
|
'aligned_policy': {
|
|
|
'weights': current_weights.tolist(),
|
|
|
'alignment_score': float(np.dot(current_weights, target_weights))
|
|
|
},
|
|
|
'trajectory': alignment_trajectory,
|
|
|
'quantum_annealing_steps': len(temperature_schedule),
|
|
|
'convergence_achieved': alignment_trajectory[-1]['alignment_score'] > 0.9
|
|
|
}
|
|
|
|
|
|
logger.info(f"Quantum annealing alignment completed. Final score: {final_alignment['aligned_policy']['alignment_score']:.4f}")
|
|
|
return final_alignment
|
|
|
|
|
|
def entangled_policy_states(self, policies: List[Dict]) -> QuantumCircuit:
|
|
|
"""
|
|
|
Create entangled quantum states representing multiple policies.
|
|
|
|
|
|
Args:
|
|
|
policies: List of policy dictionaries
|
|
|
|
|
|
Returns:
|
|
|
Quantum circuit with entangled policy representations
|
|
|
"""
|
|
|
num_policies = min(len(policies), self.num_qubits)
|
|
|
qreg = QuantumRegister(num_policies, 'policies')
|
|
|
circuit = QuantumCircuit(qreg)
|
|
|
|
|
|
|
|
|
circuit.h(qreg[0])
|
|
|
for i in range(1, num_policies):
|
|
|
circuit.cx(qreg[0], qreg[i])
|
|
|
|
|
|
|
|
|
for i, policy in enumerate(policies[:num_policies]):
|
|
|
weights = policy.get('weights', [1.0])
|
|
|
phase = np.sum(weights) % (2 * np.pi)
|
|
|
circuit.rz(phase, qreg[i])
|
|
|
|
|
|
logger.info(f"Created entangled policy states for {num_policies} policies")
|
|
|
return circuit
|
|
|
|
|
|
def measure_policy_coherence(self, policies: List[Dict]) -> float:
|
|
|
"""
|
|
|
Measure quantum coherence between multiple policies.
|
|
|
|
|
|
Args:
|
|
|
policies: List of policies to measure coherence
|
|
|
|
|
|
Returns:
|
|
|
Coherence score (0-1)
|
|
|
"""
|
|
|
if len(policies) < 2:
|
|
|
return 1.0
|
|
|
|
|
|
|
|
|
circuit = self.entangled_policy_states(policies)
|
|
|
circuit.measure_all()
|
|
|
|
|
|
|
|
|
job = self.simulator.run(circuit, shots=1024)
|
|
|
result = job.result()
|
|
|
counts = result.get_counts()
|
|
|
|
|
|
|
|
|
total_shots = sum(counts.values())
|
|
|
probabilities = np.array([count/total_shots for count in counts.values()])
|
|
|
|
|
|
|
|
|
entropy = -np.sum(probabilities * np.log2(probabilities + 1e-10))
|
|
|
max_entropy = np.log2(len(counts))
|
|
|
coherence = 1 - (entropy / max_entropy) if max_entropy > 0 else 1.0
|
|
|
|
|
|
logger.info(f"Policy coherence measured: {coherence:.4f}")
|
|
|
return coherence
|
|
|
|
|
|
def get_quantum_optimization_metrics(self) -> Dict[str, Any]:
|
|
|
"""Get comprehensive metrics for quantum policy optimization."""
|
|
|
metrics = {
|
|
|
'num_qubits': self.num_qubits,
|
|
|
'num_layers': self.num_layers,
|
|
|
'total_optimizations': len(self.reward_history),
|
|
|
'average_reward': np.mean(self.reward_history) if self.reward_history else 0.0,
|
|
|
'reward_variance': np.var(self.reward_history) if self.reward_history else 0.0,
|
|
|
'quantum_speedup_factor': 2 ** self.num_qubits,
|
|
|
'convergence_rate': len([r for r in self.reward_history if r > 0]) / len(self.reward_history) if self.reward_history else 0.0
|
|
|
}
|
|
|
|
|
|
if self.policy_params is not None:
|
|
|
metrics['current_policy_norm'] = float(np.linalg.norm(self.policy_params))
|
|
|
metrics['policy_complexity'] = len(self.policy_params)
|
|
|
|
|
|
return metrics |