|
|
|
|
|
"""
|
|
|
Stage 3: Context Engineering → Quantum Contextuality
|
|
|
|
|
|
Classical context windows collapse ambiguity. Quantum contextuality
|
|
|
preserves multiple interpretations through superposition and adaptive
|
|
|
context collapse based on feedback.
|
|
|
"""
|
|
|
|
|
|
import numpy as np
|
|
|
from typing import Dict, List, Tuple, Optional, Any, Union
|
|
|
import torch
|
|
|
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
|
|
|
from qiskit.quantum_info import Statevector, partial_trace
|
|
|
from qiskit_aer import AerSimulator
|
|
|
import pennylane as qml
|
|
|
from pennylane import numpy as pnp
|
|
|
import logging
|
|
|
from collections import defaultdict
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class QuantumContextEngine:
|
|
|
"""
|
|
|
Quantum-enhanced context engineering for multilingual AI.
|
|
|
|
|
|
Encodes context as quantum superpositions preserving cultural nuance
|
|
|
and polysemy, with adaptive context collapse based on feedback.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, max_context_qubits: int = 20, cultural_dimensions: int = 8):
|
|
|
"""Initialize quantum context engine."""
|
|
|
self.max_context_qubits = max_context_qubits
|
|
|
self.cultural_dimensions = cultural_dimensions
|
|
|
self.simulator = AerSimulator()
|
|
|
|
|
|
|
|
|
self.context_superpositions = {}
|
|
|
self.cultural_embeddings = {}
|
|
|
self.polysemy_maps = {}
|
|
|
self.feedback_history = []
|
|
|
|
|
|
|
|
|
self.dev = qml.device('default.qubit', wires=max_context_qubits)
|
|
|
|
|
|
logger.info(f"Initialized QuantumContextEngine with {max_context_qubits} qubits, {cultural_dimensions} cultural dimensions")
|
|
|
|
|
|
def encode_context_superposition(self, context_text: str, language: str,
|
|
|
cultural_context: Dict[str, float] = None) -> QuantumCircuit:
|
|
|
"""
|
|
|
Encode context as quantum superposition preserving multiple interpretations.
|
|
|
|
|
|
Args:
|
|
|
context_text: Input text context
|
|
|
language: Language of the context
|
|
|
cultural_context: Cultural dimension weights
|
|
|
|
|
|
Returns:
|
|
|
Quantum circuit encoding context superposition
|
|
|
"""
|
|
|
|
|
|
tokens = context_text.lower().split()[:self.max_context_qubits]
|
|
|
num_qubits = min(len(tokens), self.max_context_qubits)
|
|
|
|
|
|
qreg = QuantumRegister(num_qubits, 'context')
|
|
|
circuit = QuantumCircuit(qreg)
|
|
|
|
|
|
|
|
|
for i, token in enumerate(tokens[:num_qubits]):
|
|
|
circuit.h(qreg[i])
|
|
|
|
|
|
|
|
|
token_phase = (hash(token) % 1000) / 1000 * 2 * np.pi
|
|
|
circuit.rz(token_phase, qreg[i])
|
|
|
|
|
|
|
|
|
language_phases = {
|
|
|
'indonesian': np.pi/6,
|
|
|
'arabic': np.pi/4,
|
|
|
'spanish': np.pi/3,
|
|
|
'english': np.pi/2
|
|
|
}
|
|
|
lang_phase = language_phases.get(language, np.pi/4)
|
|
|
|
|
|
for i in range(num_qubits):
|
|
|
circuit.ry(lang_phase, qreg[i])
|
|
|
|
|
|
|
|
|
if cultural_context:
|
|
|
for i, (dimension, weight) in enumerate(cultural_context.items()):
|
|
|
if i < num_qubits:
|
|
|
circuit.rz(weight * np.pi, qreg[i])
|
|
|
|
|
|
|
|
|
for i in range(num_qubits - 1):
|
|
|
circuit.cx(qreg[i], qreg[i + 1])
|
|
|
|
|
|
self.context_superpositions[f"{language}_{hash(context_text)}"] = circuit
|
|
|
logger.info(f"Encoded context superposition for {language}: {num_qubits} qubits")
|
|
|
|
|
|
return circuit
|
|
|
|
|
|
def encode_polysemy(self, word: str, meanings: List[str], language: str) -> QuantumCircuit:
|
|
|
"""
|
|
|
Encode polysemous words as quantum superposition of meanings.
|
|
|
|
|
|
Args:
|
|
|
word: Polysemous word
|
|
|
meanings: List of possible meanings
|
|
|
language: Language context
|
|
|
|
|
|
Returns:
|
|
|
Quantum circuit encoding polysemy
|
|
|
"""
|
|
|
num_meanings = min(len(meanings), self.max_context_qubits)
|
|
|
qreg = QuantumRegister(num_meanings, 'meanings')
|
|
|
circuit = QuantumCircuit(qreg)
|
|
|
|
|
|
|
|
|
for i in range(num_meanings):
|
|
|
circuit.h(qreg[i])
|
|
|
|
|
|
|
|
|
for i, meaning in enumerate(meanings[:num_meanings]):
|
|
|
meaning_phase = (hash(meaning) % 1000) / 1000 * 2 * np.pi
|
|
|
circuit.rz(meaning_phase, qreg[i])
|
|
|
|
|
|
|
|
|
lang_weight = hash(language) % 100 / 100
|
|
|
for i in range(num_meanings):
|
|
|
circuit.ry(lang_weight * np.pi, qreg[i])
|
|
|
|
|
|
polysemy_key = f"{word}_{language}"
|
|
|
self.polysemy_maps[polysemy_key] = {
|
|
|
'circuit': circuit,
|
|
|
'meanings': meanings[:num_meanings],
|
|
|
'word': word,
|
|
|
'language': language
|
|
|
}
|
|
|
|
|
|
logger.info(f"Encoded polysemy for '{word}' in {language}: {num_meanings} meanings")
|
|
|
return circuit
|
|
|
|
|
|
def cultural_nuance_embedding(self, text: str, source_culture: str,
|
|
|
target_culture: str) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Create quantum embedding preserving cultural nuances across cultures.
|
|
|
|
|
|
Args:
|
|
|
text: Input text
|
|
|
source_culture: Source cultural context
|
|
|
target_culture: Target cultural context
|
|
|
|
|
|
Returns:
|
|
|
Quantum cultural embedding
|
|
|
"""
|
|
|
|
|
|
cultural_dimensions = {
|
|
|
'indonesian': {
|
|
|
'collectivism': 0.8, 'hierarchy': 0.7, 'context': 0.9, 'harmony': 0.8,
|
|
|
'relationship_focus': 0.9, 'indirect_communication': 0.8, 'respect': 0.9
|
|
|
},
|
|
|
'arabic': {
|
|
|
'collectivism': 0.7, 'hierarchy': 0.8, 'context': 0.8, 'honor': 0.9,
|
|
|
'family_centrality': 0.9, 'tradition': 0.8, 'hospitality': 0.9
|
|
|
},
|
|
|
'spanish': {
|
|
|
'collectivism': 0.6, 'hierarchy': 0.6, 'context': 0.7, 'family': 0.8,
|
|
|
'warmth': 0.8, 'expressiveness': 0.7, 'personal_relationships': 0.8
|
|
|
},
|
|
|
'english': {
|
|
|
'individualism': 0.8, 'directness': 0.7, 'efficiency': 0.8, 'innovation': 0.7,
|
|
|
'pragmatism': 0.8, 'competition': 0.7, 'time_orientation': 0.8
|
|
|
},
|
|
|
'chinese': {
|
|
|
'collectivism': 0.9, 'hierarchy': 0.9, 'context': 0.9, 'harmony': 0.9,
|
|
|
'face_saving': 0.9, 'long_term_orientation': 0.9, 'guanxi': 0.8, 'filial_piety': 0.9
|
|
|
}
|
|
|
}
|
|
|
|
|
|
source_dims = cultural_dimensions.get(source_culture, {})
|
|
|
target_dims = cultural_dimensions.get(target_culture, {})
|
|
|
|
|
|
|
|
|
num_qubits = min(self.cultural_dimensions, self.max_context_qubits)
|
|
|
qreg = QuantumRegister(num_qubits, 'culture')
|
|
|
circuit = QuantumCircuit(qreg)
|
|
|
|
|
|
|
|
|
for i in range(num_qubits):
|
|
|
circuit.h(qreg[i])
|
|
|
|
|
|
|
|
|
for i, (dim, value) in enumerate(list(source_dims.items())[:num_qubits]):
|
|
|
circuit.ry(value * np.pi, qreg[i])
|
|
|
|
|
|
|
|
|
for i in range(num_qubits - 1):
|
|
|
circuit.cx(qreg[i], qreg[i + 1])
|
|
|
|
|
|
|
|
|
for i, (dim, value) in enumerate(list(target_dims.items())[:num_qubits]):
|
|
|
if i < num_qubits:
|
|
|
circuit.rz(value * np.pi, qreg[i])
|
|
|
|
|
|
|
|
|
circuit.measure_all()
|
|
|
|
|
|
job = self.simulator.run(circuit, shots=1024)
|
|
|
result = job.result()
|
|
|
counts = result.get_counts()
|
|
|
|
|
|
|
|
|
total_shots = sum(counts.values())
|
|
|
cultural_distribution = {state: count/total_shots for state, count in counts.items()}
|
|
|
|
|
|
embedding = {
|
|
|
'source_culture': source_culture,
|
|
|
'target_culture': target_culture,
|
|
|
'cultural_distribution': cultural_distribution,
|
|
|
'dominant_pattern': max(cultural_distribution.keys(), key=cultural_distribution.get),
|
|
|
'cultural_entropy': -sum(p * np.log2(p + 1e-10) for p in cultural_distribution.values()),
|
|
|
'cross_cultural_similarity': self._calculate_cultural_similarity(source_dims, target_dims)
|
|
|
}
|
|
|
|
|
|
embedding_key = f"{source_culture}_{target_culture}_{hash(text)}"
|
|
|
self.cultural_embeddings[embedding_key] = embedding
|
|
|
|
|
|
logger.info(f"Created cultural embedding: {source_culture} → {target_culture}")
|
|
|
return embedding
|
|
|
|
|
|
def adaptive_context_collapse(self, context_key: str, feedback: Dict[str, float],
|
|
|
user_preference: str = None) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Adaptively collapse context superposition based on feedback.
|
|
|
|
|
|
Args:
|
|
|
context_key: Key identifying the context superposition
|
|
|
feedback: User feedback scores for different interpretations
|
|
|
user_preference: Preferred interpretation direction
|
|
|
|
|
|
Returns:
|
|
|
Collapsed context with selected interpretation
|
|
|
"""
|
|
|
if context_key not in self.context_superpositions:
|
|
|
logger.warning(f"Context key {context_key} not found")
|
|
|
return {}
|
|
|
|
|
|
circuit = self.context_superpositions[context_key].copy()
|
|
|
|
|
|
|
|
|
num_qubits = circuit.num_qubits
|
|
|
creg = ClassicalRegister(num_qubits, 'collapsed')
|
|
|
circuit.add_register(creg)
|
|
|
|
|
|
|
|
|
for i, (interpretation, score) in enumerate(feedback.items()):
|
|
|
if i < num_qubits:
|
|
|
|
|
|
rotation_angle = score * np.pi / 2
|
|
|
circuit.ry(rotation_angle, circuit.qregs[0][i])
|
|
|
|
|
|
|
|
|
circuit.measure(circuit.qregs[0], creg)
|
|
|
|
|
|
|
|
|
job = self.simulator.run(circuit, shots=1024)
|
|
|
result = job.result()
|
|
|
counts = result.get_counts()
|
|
|
|
|
|
|
|
|
most_probable = max(counts.keys(), key=counts.get)
|
|
|
probability = counts[most_probable] / sum(counts.values())
|
|
|
|
|
|
collapsed_context = {
|
|
|
'original_key': context_key,
|
|
|
'collapsed_state': most_probable,
|
|
|
'collapse_probability': probability,
|
|
|
'measurement_counts': counts,
|
|
|
'feedback_applied': feedback,
|
|
|
'collapse_entropy': -sum((c/sum(counts.values())) * np.log2(c/sum(counts.values()) + 1e-10)
|
|
|
for c in counts.values())
|
|
|
}
|
|
|
|
|
|
|
|
|
self.feedback_history.append({
|
|
|
'context_key': context_key,
|
|
|
'feedback': feedback,
|
|
|
'result': collapsed_context,
|
|
|
'timestamp': len(self.feedback_history)
|
|
|
})
|
|
|
|
|
|
logger.info(f"Collapsed context {context_key} with probability {probability:.3f}")
|
|
|
return collapsed_context
|
|
|
|
|
|
@qml.qnode(device=None)
|
|
|
def quantum_context_circuit(self, params: pnp.ndarray, context_encoding: List[float]) -> float:
|
|
|
"""
|
|
|
Variational quantum circuit for context processing.
|
|
|
|
|
|
Args:
|
|
|
params: Circuit parameters
|
|
|
context_encoding: Encoded context features
|
|
|
|
|
|
Returns:
|
|
|
Context relevance score
|
|
|
"""
|
|
|
|
|
|
qml.AmplitudeEmbedding(features=context_encoding, wires=range(len(context_encoding)))
|
|
|
|
|
|
|
|
|
for layer in range(3):
|
|
|
for qubit in range(len(context_encoding)):
|
|
|
qml.RY(params[layer * len(context_encoding) + qubit], wires=qubit)
|
|
|
|
|
|
|
|
|
for qubit in range(len(context_encoding) - 1):
|
|
|
qml.CNOT(wires=[qubit, qubit + 1])
|
|
|
|
|
|
return qml.expval(qml.PauliZ(0))
|
|
|
|
|
|
def quantum_context_adaptation(self, contexts: List[str], languages: List[str],
|
|
|
adaptation_target: str) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Adapt contexts across languages using quantum processing.
|
|
|
|
|
|
Args:
|
|
|
contexts: List of context strings
|
|
|
languages: Corresponding languages
|
|
|
adaptation_target: Target adaptation goal
|
|
|
|
|
|
Returns:
|
|
|
Adapted context results
|
|
|
"""
|
|
|
|
|
|
self.quantum_context_circuit.device = self.dev
|
|
|
|
|
|
adapted_results = {}
|
|
|
|
|
|
for context, language in zip(contexts, languages):
|
|
|
|
|
|
tokens = context.lower().split()[:8]
|
|
|
context_encoding = np.zeros(8)
|
|
|
|
|
|
for i, token in enumerate(tokens):
|
|
|
if i < 8:
|
|
|
context_encoding[i] = (hash(token) % 1000) / 1000
|
|
|
|
|
|
|
|
|
context_encoding = context_encoding / (np.linalg.norm(context_encoding) + 1e-10)
|
|
|
|
|
|
|
|
|
num_params = 3 * len(context_encoding)
|
|
|
params = pnp.random.random(num_params, requires_grad=True)
|
|
|
|
|
|
|
|
|
optimizer = qml.AdamOptimizer(stepsize=0.1)
|
|
|
|
|
|
for step in range(50):
|
|
|
params, cost = optimizer.step_and_cost(
|
|
|
lambda p: -self.quantum_context_circuit(p, context_encoding), params
|
|
|
)
|
|
|
|
|
|
|
|
|
adapted_score = self.quantum_context_circuit(params, context_encoding)
|
|
|
|
|
|
adapted_results[f"{language}_{hash(context)}"] = {
|
|
|
'original_context': context,
|
|
|
'language': language,
|
|
|
'adapted_score': float(adapted_score),
|
|
|
'quantum_params': params.tolist(),
|
|
|
'adaptation_target': adaptation_target
|
|
|
}
|
|
|
|
|
|
logger.info(f"Quantum context adaptation completed for {len(contexts)} contexts")
|
|
|
return adapted_results
|
|
|
|
|
|
def _calculate_cultural_similarity(self, culture1: Dict[str, float],
|
|
|
culture2: Dict[str, float]) -> float:
|
|
|
"""Calculate similarity between cultural dimension vectors."""
|
|
|
common_dims = set(culture1.keys()) & set(culture2.keys())
|
|
|
if not common_dims:
|
|
|
return 0.0
|
|
|
|
|
|
vec1 = np.array([culture1[dim] for dim in common_dims])
|
|
|
vec2 = np.array([culture2[dim] for dim in common_dims])
|
|
|
|
|
|
|
|
|
similarity = np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2) + 1e-10)
|
|
|
return float(similarity)
|
|
|
|
|
|
def get_quantum_context_metrics(self) -> Dict[str, Any]:
|
|
|
"""Get comprehensive metrics for quantum context processing."""
|
|
|
metrics = {
|
|
|
'max_context_qubits': self.max_context_qubits,
|
|
|
'cultural_dimensions': self.cultural_dimensions,
|
|
|
'context_superpositions_created': len(self.context_superpositions),
|
|
|
'polysemy_maps_created': len(self.polysemy_maps),
|
|
|
'cultural_embeddings_created': len(self.cultural_embeddings),
|
|
|
'feedback_interactions': len(self.feedback_history),
|
|
|
'quantum_context_advantage': 2 ** self.max_context_qubits
|
|
|
}
|
|
|
|
|
|
|
|
|
if self.feedback_history:
|
|
|
feedback_scores = []
|
|
|
for feedback in self.feedback_history:
|
|
|
scores = list(feedback['feedback'].values())
|
|
|
if scores:
|
|
|
feedback_scores.extend(scores)
|
|
|
|
|
|
if feedback_scores:
|
|
|
metrics['average_feedback_score'] = np.mean(feedback_scores)
|
|
|
metrics['feedback_variance'] = np.var(feedback_scores)
|
|
|
|
|
|
|
|
|
if self.cultural_embeddings:
|
|
|
similarities = [emb['cross_cultural_similarity'] for emb in self.cultural_embeddings.values()]
|
|
|
metrics['average_cultural_similarity'] = np.mean(similarities)
|
|
|
metrics['cultural_diversity'] = np.var(similarities)
|
|
|
|
|
|
return metrics |