QuantumLimitGraph-v2 / quantum_context_engine.py
Nurcholish's picture
Upload 13 files
b793755 verified
# -*- coding: utf-8 -*-
"""
Stage 3: Context Engineering → Quantum Contextuality
Classical context windows collapse ambiguity. Quantum contextuality
preserves multiple interpretations through superposition and adaptive
context collapse based on feedback.
"""
import numpy as np
from typing import Dict, List, Tuple, Optional, Any, Union
import torch
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.quantum_info import Statevector, partial_trace
from qiskit_aer import AerSimulator
import pennylane as qml
from pennylane import numpy as pnp
import logging
from collections import defaultdict
logger = logging.getLogger(__name__)
class QuantumContextEngine:
"""
Quantum-enhanced context engineering for multilingual AI.
Encodes context as quantum superpositions preserving cultural nuance
and polysemy, with adaptive context collapse based on feedback.
"""
def __init__(self, max_context_qubits: int = 20, cultural_dimensions: int = 8):
"""Initialize quantum context engine."""
self.max_context_qubits = max_context_qubits
self.cultural_dimensions = cultural_dimensions
self.simulator = AerSimulator()
# Context state management
self.context_superpositions = {}
self.cultural_embeddings = {}
self.polysemy_maps = {}
self.feedback_history = []
# PennyLane device for variational circuits
self.dev = qml.device('default.qubit', wires=max_context_qubits)
logger.info(f"Initialized QuantumContextEngine with {max_context_qubits} qubits, {cultural_dimensions} cultural dimensions")
def encode_context_superposition(self, context_text: str, language: str,
cultural_context: Dict[str, float] = None) -> QuantumCircuit:
"""
Encode context as quantum superposition preserving multiple interpretations.
Args:
context_text: Input text context
language: Language of the context
cultural_context: Cultural dimension weights
Returns:
Quantum circuit encoding context superposition
"""
# Tokenize and encode context
tokens = context_text.lower().split()[:self.max_context_qubits]
num_qubits = min(len(tokens), self.max_context_qubits)
qreg = QuantumRegister(num_qubits, 'context')
circuit = QuantumCircuit(qreg)
# Create superposition for each token
for i, token in enumerate(tokens[:num_qubits]):
circuit.h(qreg[i])
# Encode token-specific phase
token_phase = (hash(token) % 1000) / 1000 * 2 * np.pi
circuit.rz(token_phase, qreg[i])
# Language-specific encoding
language_phases = {
'indonesian': np.pi/6,
'arabic': np.pi/4,
'spanish': np.pi/3,
'english': np.pi/2
}
lang_phase = language_phases.get(language, np.pi/4)
for i in range(num_qubits):
circuit.ry(lang_phase, qreg[i])
# Cultural context encoding
if cultural_context:
for i, (dimension, weight) in enumerate(cultural_context.items()):
if i < num_qubits:
circuit.rz(weight * np.pi, qreg[i])
# Create entanglement for contextual relationships
for i in range(num_qubits - 1):
circuit.cx(qreg[i], qreg[i + 1])
self.context_superpositions[f"{language}_{hash(context_text)}"] = circuit
logger.info(f"Encoded context superposition for {language}: {num_qubits} qubits")
return circuit
def encode_polysemy(self, word: str, meanings: List[str], language: str) -> QuantumCircuit:
"""
Encode polysemous words as quantum superposition of meanings.
Args:
word: Polysemous word
meanings: List of possible meanings
language: Language context
Returns:
Quantum circuit encoding polysemy
"""
num_meanings = min(len(meanings), self.max_context_qubits)
qreg = QuantumRegister(num_meanings, 'meanings')
circuit = QuantumCircuit(qreg)
# Create uniform superposition of meanings
for i in range(num_meanings):
circuit.h(qreg[i])
# Encode meaning-specific phases
for i, meaning in enumerate(meanings[:num_meanings]):
meaning_phase = (hash(meaning) % 1000) / 1000 * 2 * np.pi
circuit.rz(meaning_phase, qreg[i])
# Language-specific modulation
lang_weight = hash(language) % 100 / 100
for i in range(num_meanings):
circuit.ry(lang_weight * np.pi, qreg[i])
polysemy_key = f"{word}_{language}"
self.polysemy_maps[polysemy_key] = {
'circuit': circuit,
'meanings': meanings[:num_meanings],
'word': word,
'language': language
}
logger.info(f"Encoded polysemy for '{word}' in {language}: {num_meanings} meanings")
return circuit
def cultural_nuance_embedding(self, text: str, source_culture: str,
target_culture: str) -> Dict[str, Any]:
"""
Create quantum embedding preserving cultural nuances across cultures.
Args:
text: Input text
source_culture: Source cultural context
target_culture: Target cultural context
Returns:
Quantum cultural embedding
"""
# Cultural dimension mappings with comprehensive coverage
cultural_dimensions = {
'indonesian': {
'collectivism': 0.8, 'hierarchy': 0.7, 'context': 0.9, 'harmony': 0.8,
'relationship_focus': 0.9, 'indirect_communication': 0.8, 'respect': 0.9
},
'arabic': {
'collectivism': 0.7, 'hierarchy': 0.8, 'context': 0.8, 'honor': 0.9,
'family_centrality': 0.9, 'tradition': 0.8, 'hospitality': 0.9
},
'spanish': {
'collectivism': 0.6, 'hierarchy': 0.6, 'context': 0.7, 'family': 0.8,
'warmth': 0.8, 'expressiveness': 0.7, 'personal_relationships': 0.8
},
'english': {
'individualism': 0.8, 'directness': 0.7, 'efficiency': 0.8, 'innovation': 0.7,
'pragmatism': 0.8, 'competition': 0.7, 'time_orientation': 0.8
},
'chinese': {
'collectivism': 0.9, 'hierarchy': 0.9, 'context': 0.9, 'harmony': 0.9,
'face_saving': 0.9, 'long_term_orientation': 0.9, 'guanxi': 0.8, 'filial_piety': 0.9
}
}
source_dims = cultural_dimensions.get(source_culture, {})
target_dims = cultural_dimensions.get(target_culture, {})
# Create quantum circuit for cultural embedding
num_qubits = min(self.cultural_dimensions, self.max_context_qubits)
qreg = QuantumRegister(num_qubits, 'culture')
circuit = QuantumCircuit(qreg)
# Initialize superposition
for i in range(num_qubits):
circuit.h(qreg[i])
# Encode source culture
for i, (dim, value) in enumerate(list(source_dims.items())[:num_qubits]):
circuit.ry(value * np.pi, qreg[i])
# Create cultural entanglement
for i in range(num_qubits - 1):
circuit.cx(qreg[i], qreg[i + 1])
# Target culture transformation
for i, (dim, value) in enumerate(list(target_dims.items())[:num_qubits]):
if i < num_qubits:
circuit.rz(value * np.pi, qreg[i])
# Measure cultural embedding
circuit.measure_all()
job = self.simulator.run(circuit, shots=1024)
result = job.result()
counts = result.get_counts()
# Extract cultural features
total_shots = sum(counts.values())
cultural_distribution = {state: count/total_shots for state, count in counts.items()}
embedding = {
'source_culture': source_culture,
'target_culture': target_culture,
'cultural_distribution': cultural_distribution,
'dominant_pattern': max(cultural_distribution.keys(), key=cultural_distribution.get),
'cultural_entropy': -sum(p * np.log2(p + 1e-10) for p in cultural_distribution.values()),
'cross_cultural_similarity': self._calculate_cultural_similarity(source_dims, target_dims)
}
embedding_key = f"{source_culture}_{target_culture}_{hash(text)}"
self.cultural_embeddings[embedding_key] = embedding
logger.info(f"Created cultural embedding: {source_culture}{target_culture}")
return embedding
def adaptive_context_collapse(self, context_key: str, feedback: Dict[str, float],
user_preference: str = None) -> Dict[str, Any]:
"""
Adaptively collapse context superposition based on feedback.
Args:
context_key: Key identifying the context superposition
feedback: User feedback scores for different interpretations
user_preference: Preferred interpretation direction
Returns:
Collapsed context with selected interpretation
"""
if context_key not in self.context_superpositions:
logger.warning(f"Context key {context_key} not found")
return {}
circuit = self.context_superpositions[context_key].copy()
# Add measurement based on feedback
num_qubits = circuit.num_qubits
creg = ClassicalRegister(num_qubits, 'collapsed')
circuit.add_register(creg)
# Apply feedback-weighted rotations before measurement
for i, (interpretation, score) in enumerate(feedback.items()):
if i < num_qubits:
# Higher score = more likely to measure |1⟩
rotation_angle = score * np.pi / 2
circuit.ry(rotation_angle, circuit.qregs[0][i])
# Measure all qubits
circuit.measure(circuit.qregs[0], creg)
# Execute measurement
job = self.simulator.run(circuit, shots=1024)
result = job.result()
counts = result.get_counts()
# Select most probable interpretation
most_probable = max(counts.keys(), key=counts.get)
probability = counts[most_probable] / sum(counts.values())
collapsed_context = {
'original_key': context_key,
'collapsed_state': most_probable,
'collapse_probability': probability,
'measurement_counts': counts,
'feedback_applied': feedback,
'collapse_entropy': -sum((c/sum(counts.values())) * np.log2(c/sum(counts.values()) + 1e-10)
for c in counts.values())
}
# Store feedback for learning
self.feedback_history.append({
'context_key': context_key,
'feedback': feedback,
'result': collapsed_context,
'timestamp': len(self.feedback_history)
})
logger.info(f"Collapsed context {context_key} with probability {probability:.3f}")
return collapsed_context
@qml.qnode(device=None)
def quantum_context_circuit(self, params: pnp.ndarray, context_encoding: List[float]) -> float:
"""
Variational quantum circuit for context processing.
Args:
params: Circuit parameters
context_encoding: Encoded context features
Returns:
Context relevance score
"""
# Encode context
qml.AmplitudeEmbedding(features=context_encoding, wires=range(len(context_encoding)))
# Variational layers
for layer in range(3):
for qubit in range(len(context_encoding)):
qml.RY(params[layer * len(context_encoding) + qubit], wires=qubit)
# Entangling gates
for qubit in range(len(context_encoding) - 1):
qml.CNOT(wires=[qubit, qubit + 1])
return qml.expval(qml.PauliZ(0))
def quantum_context_adaptation(self, contexts: List[str], languages: List[str],
adaptation_target: str) -> Dict[str, Any]:
"""
Adapt contexts across languages using quantum processing.
Args:
contexts: List of context strings
languages: Corresponding languages
adaptation_target: Target adaptation goal
Returns:
Adapted context results
"""
# Set device for quantum node
self.quantum_context_circuit.device = self.dev
adapted_results = {}
for context, language in zip(contexts, languages):
# Encode context as quantum features
tokens = context.lower().split()[:8] # Limit for quantum processing
context_encoding = np.zeros(8)
for i, token in enumerate(tokens):
if i < 8:
context_encoding[i] = (hash(token) % 1000) / 1000
# Normalize encoding
context_encoding = context_encoding / (np.linalg.norm(context_encoding) + 1e-10)
# Initialize parameters
num_params = 3 * len(context_encoding)
params = pnp.random.random(num_params, requires_grad=True)
# Optimize for adaptation target
optimizer = qml.AdamOptimizer(stepsize=0.1)
for step in range(50):
params, cost = optimizer.step_and_cost(
lambda p: -self.quantum_context_circuit(p, context_encoding), params
)
# Get final adapted score
adapted_score = self.quantum_context_circuit(params, context_encoding)
adapted_results[f"{language}_{hash(context)}"] = {
'original_context': context,
'language': language,
'adapted_score': float(adapted_score),
'quantum_params': params.tolist(),
'adaptation_target': adaptation_target
}
logger.info(f"Quantum context adaptation completed for {len(contexts)} contexts")
return adapted_results
def _calculate_cultural_similarity(self, culture1: Dict[str, float],
culture2: Dict[str, float]) -> float:
"""Calculate similarity between cultural dimension vectors."""
common_dims = set(culture1.keys()) & set(culture2.keys())
if not common_dims:
return 0.0
vec1 = np.array([culture1[dim] for dim in common_dims])
vec2 = np.array([culture2[dim] for dim in common_dims])
# Cosine similarity
similarity = np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2) + 1e-10)
return float(similarity)
def get_quantum_context_metrics(self) -> Dict[str, Any]:
"""Get comprehensive metrics for quantum context processing."""
metrics = {
'max_context_qubits': self.max_context_qubits,
'cultural_dimensions': self.cultural_dimensions,
'context_superpositions_created': len(self.context_superpositions),
'polysemy_maps_created': len(self.polysemy_maps),
'cultural_embeddings_created': len(self.cultural_embeddings),
'feedback_interactions': len(self.feedback_history),
'quantum_context_advantage': 2 ** self.max_context_qubits # Exponential state space
}
# Analyze feedback patterns
if self.feedback_history:
feedback_scores = []
for feedback in self.feedback_history:
scores = list(feedback['feedback'].values())
if scores:
feedback_scores.extend(scores)
if feedback_scores:
metrics['average_feedback_score'] = np.mean(feedback_scores)
metrics['feedback_variance'] = np.var(feedback_scores)
# Cultural embedding analysis
if self.cultural_embeddings:
similarities = [emb['cross_cultural_similarity'] for emb in self.cultural_embeddings.values()]
metrics['average_cultural_similarity'] = np.mean(similarities)
metrics['cultural_diversity'] = np.var(similarities)
return metrics